Modelling and simulation of phase change material latent heat storages applied to a solar-powered Organic Rankine Cycle

Solar energy is one of the most promising renewable energy sources, but is intermittent by its nature. The study of efficient thermal heat storage technologies is of fundamental importance for the development of solar power systems. This work focuses on a robust mathematical model of a Latent Heat Storage (LHS) system constituted by a storage tank containing Phase Change Material spheres. The model, developed in EES environment, provides the time-dependent temperature profiles for the PCM and the heat transfer fluid flowing in the storage tank, and the energy and exergy stored as well.

[1]  Piergiorgio Alotto,et al.  Redox flow batteries for the storage of renewable energy: A review , 2014 .

[2]  R. Courant,et al.  On the Partial Difference Equations, of Mathematical Physics , 2015 .

[3]  Adrian Ilinca,et al.  Energy storage systems—Characteristics and comparisons , 2008 .

[4]  J. M. Coulson,et al.  Heat Transfer , 2018, A Concise Manual of Engineering Thermodynamics.

[5]  Giampaolo Manfrida,et al.  Performance prediction of a small-size adiabatic compressed air energy storage system , 2015 .

[6]  A. Sharma,et al.  Review on thermal energy storage with phase change materials and applications , 2009 .

[7]  Peiwen Li,et al.  An Enthalpy Formulation for Thermocline With Encapsulated PCM Thermal Storage and Benchmark Solution Using the Method of Characteristics , 2013 .

[8]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[9]  Jinjia Wei,et al.  Study on a PCM Heat Storage System for Rapid Heat Supply , 2005 .

[10]  Jean-Pierre Bédécarrats,et al.  Study of a phase change energy storage using spherical capsules. Part II: Numerical modelling , 2009 .

[11]  Yaşar Demirel,et al.  Thermoeconomics of seasonal latent heat storage system , 2006 .

[12]  Christos N. Markides,et al.  Low-Concentration Solar-Power Systems Based on Organic Rankine Cycles for Distributed-Scale Applications: Overview and Further Developments , 2015, Front. Energy Res..

[13]  Parfait Tatsidjodoung,et al.  A review of potential materials for thermal energy storage in building applications , 2013 .

[14]  Li Jing,et al.  Design and analysis of a novel low-temperature solar thermal electric system with two-stage collectors and heat storage units , 2011 .

[15]  Mohamed Khayet,et al.  Temperature-dependent thermal properties of solid/liquid phase change even-numbered n-alkanes: n-Hexadecane, n-octadecane and n-eicosane , 2015 .

[16]  Dan Zhou,et al.  Review on thermal energy storage with phase change materials (PCMs) in building applications , 2012 .

[17]  Ephraim M Sparrow,et al.  Influence of Bed Size on the Flow Characteristics and Porosity of Randomly Packed Beds of Spheres , 1973 .

[18]  Giampaolo Manfrida,et al.  Seawater pumping as an electricity storage solution for photovoltaic energy systems , 2014 .

[19]  R. V. Holla,et al.  Energy Storage Methods - Superconducting Magnetic Energy Storage - A Review , 2015 .

[20]  Jing Li,et al.  Analysis of low temperature solar thermal electric generation using regenerative Organic Rankine Cycle , 2010 .

[21]  S. M. Hasnain Review on sustainable thermal energy storage technologies, Part I: heat storage materials and techniques , 1998 .

[22]  A. London,et al.  Compact heat exchangers , 1960 .

[23]  R. Velraj,et al.  Experimental investigation on a combined sensible and latent heat storage system integrated with constant/varying (solar) heat sources , 2007 .

[24]  Kamal Abdel Radi Ismail,et al.  Numerical and experimental study of spherical capsules packed bed latent heat storage system , 2002 .

[25]  Mauro Villarini,et al.  Energy and Economic Analysis of a Residential Solar Organic Rankine Plant , 2015 .

[26]  Jon T. Van Lew,et al.  Transient Heat Delivery and Storage Process in a Thermocline Heat Storage System , 2009 .

[27]  Francis Agyenim,et al.  A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) , 2010 .

[28]  Daniele Fiaschi,et al.  A versatile system for offshore energy conversion including diversified storage , 2012 .

[29]  Luisa F. Cabeza,et al.  Materials used as PCM in thermal energy storage in buildings: A review , 2011 .

[30]  Ibrahim Dincer,et al.  Thermodynamic Analysis of Freezing and Melting Processes in a Bed of Spherical PCM Capsules , 2009 .

[31]  R. Ackermann,et al.  Cryogenic Regenerative Heat Exchangers , 2013 .

[32]  Suresh V. Garimella,et al.  Latent heat augmentation of thermocline energy storage for concentrating solar power – A system-level assessment , 2014 .

[33]  S. C. Solanki,et al.  An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation , 2009 .

[34]  Nicholas R. Jankowski,et al.  A review of phase change materials for vehicle component thermal buffering , 2014 .

[35]  Christos N. Markides,et al.  An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications , 2015 .

[36]  T.E.W. Schumann,et al.  Heat transfer: A liquid flowing through a porous prism , 1929 .

[37]  Xu Liu,et al.  Dynamic discharging characteristics simulation on solar heat storage system with spherical capsules using paraffin as heat storage material , 2011 .

[38]  Luisa F. Cabeza,et al.  Review on thermal energy storage with phase change: materials, heat transfer analysis and applications , 2003 .

[39]  Changying Zhao,et al.  A review of solar collectors and thermal energy storage in solar thermal applications , 2013 .

[40]  Ibrahim Dincer,et al.  An approach to entropy analysis of a latent heat storage module , 2008 .

[41]  Tarik Kousksou,et al.  Exergy based performance evaluation of latent heat thermal storage system: A review , 2010 .

[42]  David G. Dorrell,et al.  Fractional-order modeling and State-of-Charge estimation for ultracapacitors , 2016 .

[43]  Xiaosong Hu,et al.  Model-Based Dynamic Power Assessment of Lithium-Ion Batteries Considering Different Operating Conditions , 2014, IEEE Transactions on Industrial Informatics.

[44]  Francesco Calise,et al.  Design and Parametric Optimization of an Organic Rankine Cycle Powered by Solar Energy , 2013 .

[45]  R. Sebastian,et al.  Flywheel energy storage systems: Review and simulation for an isolated wind power system , 2012 .

[46]  Jean-Pierre Bédécarrats,et al.  Study of a phase change energy storage using spherical capsules. Part I: Experimental results , 2009 .