Biologically Inspired Design Of Small Flapping Wing Air Vehicles Using Four-Bar Mechanisms And Quasi-steady Aerodynamics

In this paper, the energetics of a flapping wing micro air vehicle is analyzed with the objective of design of flapping wing air vehicles. The salient features of this study are: (i) design of an energy storage mechanism in the air vehicle similar to an insect thorax which stores part of the kinetic energy of the wing as elastic potential energy in the thorax during a flapping cycle; (ii) inclusion of aerodynamic wing models using blade element theory and inertia of the mechanism using rigid body modeling techniques; (iii) optimization of parameters of the energy storage mechanism using the dynamic models so that the peak power input from the external actuators during a flapping cycle is minimized. A series of engineering prototypes based on these studies have been fabricated which justify the use of these mathematical techniques.