Organic flux synthesis of covalent organic frameworks

[1]  J. E. Lee,et al.  Crystallinity of Imide-Linked Two-Dimensional Polymers Depends on the Nucleophilicity of Triamine Building Blocks , 2022, ACS Materials Letters.

[2]  N. Clark,et al.  Synthesis of γ-graphyne using dynamic covalent chemistry , 2022, Nature Synthesis.

[3]  G. Wang,et al.  Constructing ambivalent imidazopyridinium-linked covalent organic frameworks , 2022, Nature Synthesis.

[4]  Reiner Sebastian Sprick,et al.  Reconstructed covalent organic frameworks , 2022, Nature.

[5]  R. Banerjee,et al.  Porous covalent organic nanotubes and their assembly in loops and toroids , 2022, Nature Chemistry.

[6]  J. Segura,et al.  Covalent organic frameworks based on electroactive naphthalenediimide as active electrocatalysts toward oxygen reduction reaction , 2022, Applied Materials Today.

[7]  B. Lotsch,et al.  Direct and Linker-Exchange Alcohol-Assisted Hydrothermal Synthesis of Imide-Linked Covalent Organic Frameworks , 2022, Chemistry of materials : a publication of the American Chemical Society.

[8]  T. Heine,et al.  A Statistical Representation of Stacking Disorder in Layered Covalent Organic Frameworks , 2022, Chemistry of Materials.

[9]  Xingzhong Yuan,et al.  Structure–performance correlation guided applications of covalent organic frameworks , 2022, Materials Today.

[10]  S. Kim,et al.  Soluble Poly(amide-imide)s from Diamide–Diamine Monomer with Trifluoromethyl Groups , 2022, Polymers.

[11]  Geunsik Lee,et al.  Geomimetic Hydrothermal Synthesis of Polyimide-Based Covalent Organic Frameworks. , 2021, Angewandte Chemie.

[12]  Yue‐Biao Zhang,et al.  A Three-Dimensional sp2 Carbon-Conjugated Covalent Organic Framework. , 2021, Journal of the American Chemical Society.

[13]  Xiaofei Yang,et al.  Dual‐Active‐Center of Polyimide and Triazine Modified Atomic‐Layer Covalent Organic Frameworks for High‐Performance Li Storage , 2021, Advanced Functional Materials.

[14]  Zhifang Wang,et al.  Green synthesis of olefin-linked covalent organic frameworks for hydrogen fuel cell applications , 2021, Nature Communications.

[15]  A. Ciesielski,et al.  Chemical conversion and locking of the imine linkage: enhancing the functionality of covalent organic frameworks. , 2021, Angewandte Chemie.

[16]  Yan Liu,et al.  Crystalline C-C and C═C Bond-Linked Chiral Covalent Organic Frameworks. , 2020, Journal of the American Chemical Society.

[17]  S. Kitagawa,et al.  Dynamic Transformation between Covalent Organic Frameworks and Discrete Organic Cages. , 2020, Journal of the American Chemical Society.

[18]  B. Lotsch,et al.  Solving the COF trilemma: towards crystalline, stable and functional covalent organic frameworks. , 2020, Chemical Society reviews.

[19]  Yu‐Bin Dong,et al.  Catalytic Asymmetric Synthesis of Chiral Covalent Organic Frameworks from Prochiral Monomers for Heterogeneous Asymmetric Catalysis. , 2020, Journal of the American Chemical Society.

[20]  S. Kitagawa,et al.  Crystalline and Stable Benzofuran-Linked Covalent Organic Frameworks from Irreversible Cascade Reactions. , 2020, Journal of the American Chemical Society.

[21]  C. Ochsenfeld,et al.  Ionothermal Synthesis of Imide‐Linked Covalent Organic Frameworks , 2020, Angewandte Chemie.

[22]  Jinhong Bi,et al.  Integrating single Ni sites into biomimetic networks of covalent organic frameworks for selective photoreduction of CO2† †Electronic supplementary information (ESI) available: Experimental details and characterization. See DOI: 10.1039/d0sc01747g , 2020, Chemical science.

[23]  Xiu‐Ping Yan,et al.  Irreversible amide-linked covalent organic framework for selective and ultrafast gold recovery. , 2020, Angewandte Chemie.

[24]  Qichun Zhang,et al.  Recent Progress in Metal-Free Covalent Organic Frameworks as Heterogeneous Catalysts. , 2020, Small.

[25]  Xiao Feng,et al.  Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. , 2020, Chemical Society reviews.

[26]  Zhifang Wang,et al.  Covalent organic frameworks for separation applications. , 2020, Chemical Society reviews.

[27]  T. He,et al.  Covalent Organic Frameworks: Design, Synthesis, and Functions. , 2020, Chemical reviews.

[28]  Liping Guo,et al.  Strong Base Assisted Synthesis of Crystalline Covalent Triazine Framework with High Hydrophilicity via Benzylamine Monomer for Photocatalytic Water Splitting. , 2020, Angewandte Chemie.

[29]  J. Martínez,et al.  Oxygen reduction using a metal-free naphthalene diimide-based covalent organic framework electrocatalyst. , 2020, Chemical communications.

[30]  S. Qiu,et al.  Postsynthetic functionalization of covalent organic frameworks , 2019, National science review.

[31]  M. Strano,et al.  Reversible Polycondensation-Termination Growth of Covalent-Organic-Framework Spheres, Fibers, and Films , 2019 .

[32]  Yanli Zhao,et al.  Construction of Covalent-Organic Frameworks from Amorphous Covalent Organic Polymers via Linkage Replacement. , 2019, Angewandte Chemie.

[33]  Sanyuan Ding,et al.  Constructing Robust Covalent Organic Frameworks via Multicomponent Reactions. , 2019, Journal of the American Chemical Society.

[34]  G. Zeng,et al.  Recent advances in covalent organic frameworks (COFs) as a smart sensing material. , 2019, Chemical Society reviews.

[35]  J. Baek,et al.  Converting Unstable Imine-Linked Network into Stable Aromatic Benzoxazole-Linked One via Post-Oxidative Cyclization. , 2019, Journal of the American Chemical Society.

[36]  G. Zhu,et al.  Construction of a Stable Crystalline Polyimide Porous Organic Framework for C2 H2 /C2 H4 and CO2 /N2 Separation. , 2019, Chemistry.

[37]  Yongjun Li,et al.  Few layer covalent organic frameworks with graphene sheets as cathode materials for lithium-ion batteries. , 2019, Nanoscale.

[38]  W. Xie,et al.  Covalent Organic Frameworks with Chirality Enriched by Biomolecules for Efficient Chiral Separation. , 2018, Angewandte Chemie.

[39]  Katie R. Meihaus,et al.  A Crystalline Polyimide Porous Organic Framework for Selective Adsorption of Acetylene over Ethylene. , 2018, Journal of the American Chemical Society.

[40]  Yaobing Wang,et al.  Direct Solar-to-Electrochemical Energy Storage in a Functionalized Covalent Organic Framework. , 2018, Angewandte Chemie.

[41]  Jie Su,et al.  Single-crystal x-ray diffraction structures of covalent organic frameworks , 2018, Science.

[42]  William R. Dichtel,et al.  Seeded growth of single-crystal two-dimensional covalent organic frameworks , 2018, Science.

[43]  F. Disalvo,et al.  Sodium flux synthesis of nitrides , 2017, Progress in Solid State Chemistry.

[44]  T. Heine,et al.  Two-dimensional sp2 carbon–conjugated covalent organic frameworks , 2017, Science.

[45]  S. Dai,et al.  Efficient removal of organic dye pollutants using covalent organic frameworks , 2017 .

[46]  J. Reimer,et al.  Chemical Conversion of Linkages in Covalent Organic Frameworks. , 2016, Journal of the American Chemical Society.

[47]  Yu Cao,et al.  A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton , 2016 .

[48]  Mark D. Smith,et al.  Understanding the Formation of Salt-Inclusion Phases: An Enhanced Flux Growth Method for the Targeted Synthesis of Salt-Inclusion Cesium Halide Uranyl Silicates. , 2016, Journal of the American Chemical Society.

[49]  K. Domen,et al.  Effects of flux synthesis on SrNbO2N particles for photoelectrochemical water splitting , 2016 .

[50]  Yushan Yan,et al.  Designed synthesis of large-pore crystalline polyimide covalent organic frameworks , 2014, Nature Communications.

[51]  T. Maris,et al.  Constructing monocrystalline covalent organic networks by polymerization , 2013, Nature Chemistry.

[52]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[53]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[54]  S. D. Mahanti,et al.  Gallium Flux Synthesis of Tb3−xC2Si8(B12)3: A Novel Quaternary Boron‐Rich Phase Containing B12 Icosahedra , 2002 .