Theoretical and Empirical Properties of the Genetic Algorithm as a Numerical Optimizer

Abstract We investigate the basic form of the genetic algorithm as an optimization technique. Its failure to maximize a simple function of a string of 50 binary variables prompts a closer study of Holland's “schema theorem” and we find the implications of this result to be much weaker than are often claimed. Further theoretical results and exact calculations for simple problems provide an understanding of how the genetic algorithm works and why it failed in our original application. We show that the algorithm can be fine tuned to succeed in that problem but only by introducing features that could cause serious difficulties in harder problems.

[1]  Kenneth A. De Jong,et al.  Genetic Algorithms are NOT Function Optimizers , 1992, FOGA.

[2]  Z. Michalewicz Non-standard methods in evolutionary computation , 1994 .

[3]  Melanie Mitchell,et al.  Relative Building-Block Fitness and the Building Block Hypothesis , 1992, FOGA.

[4]  Larry J. Eshelman,et al.  Using Multiple Representations to Improve Inductive Bias: Gray and Binary Coding for Genetic Algorithms , 1989, ML.

[5]  Bruce E. Rosen,et al.  Genetic Algorithms and Very Fast Simulated Reannealing: A comparison , 1992 .

[6]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[7]  Michael D. Vose,et al.  Modeling Simple Genetic Algorithms , 1992, FOGA.

[8]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[9]  D. Ackley A connectionist machine for genetic hillclimbing , 1987 .

[10]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[11]  David H. Ackley,et al.  An empirical study of bit vector function optimization , 1987 .

[12]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[13]  G. Grimmett,et al.  Probability and random processes , 2002 .

[14]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[16]  Z. Michalewicz,et al.  Genetic algorithms for numerical optimization , 1991 .

[17]  R. A. Doney,et al.  4. Probability and Random Processes , 1993 .

[18]  L. Booker Foundations of genetic algorithms. 2: L. Darrell Whitley (Ed.), Morgan Kaufmann, San Mateo, CA, 1993, ISBN 1-55860-263-1, 322 pp., US$45.95 , 1994 .

[19]  Larry J. Eshelman,et al.  The CHC Adaptive Search Algorithm: How to Have Safe Search When Engaging in Nontraditional Genetic Recombination , 1990, FOGA.

[20]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[21]  John J. Grefenstette,et al.  Deception Considered Harmful , 1992, FOGA.

[22]  J. David Schaffer,et al.  Representation and Hidden Bias: Gray vs. Binary Coding for Genetic Algorithms , 1988, ML.