Provenance-based Recommendations for Visual Data Exploration

Visual data exploration allows users to analyze datasets based on visualizations of interesting data characteristics, to possibly discover interesting information about the data that users are a priori unaware of. In this context, both recommendations of queries selecting the data to be visualized and recommendations of visualizations that highlight interesting data characteristics support users in visual data exploration. So far, these two types of recommendations have been mostly considered in isolation of one another. We present a recommendation approach for visual data exploration that unifies query recommendation and visualization recommendation. The recommendations rely on two types of provenance, i.e., data provenance (aka lineage) and evolution provenance that tracks users’ interactions with a data exploration system. This paper presents the provenance data model as well as the overall system architecture. We then provide details on our provenance-based recommendation algorithms. A preliminary experimental evaluation showcases the applicability of our solution in practice.

[1]  Kanit Wongsuphasawat,et al.  Voyager: Exploratory Analysis via Faceted Browsing of Visualization Recommendations , 2016, IEEE Transactions on Visualization and Computer Graphics.

[2]  Felix Naumann,et al.  Profiling relational data: a survey , 2015, The VLDB Journal.

[3]  Arvind Satyanarayan,et al.  Vega-Lite: A Grammar of Interactive Graphics , 2018, IEEE Transactions on Visualization and Computer Graphics.

[4]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[5]  Aditya G. Parameswaran,et al.  SeeDB: Efficient Data-Driven Visualization Recommendations to Support Visual Analytics , 2015, Proc. VLDB Endow..

[6]  Stuart Barber,et al.  All of Statistics: a Concise Course in Statistical Inference , 2005 .

[7]  Zening Qu,et al.  Evaluating Visualization Sets: Trade-offs Between Local Effectiveness and Global Consistency , 2016, BELIV '16.

[8]  Gustavo Alonso,et al.  The perm provenance management system in action , 2009, SIGMOD Conference.

[9]  Fotis Psallidas,et al.  Combining Design and Performance in a Data Visualization Management System , 2017, CIDR.

[10]  Surajit Chaudhuri,et al.  Overview of Data Exploration Techniques , 2015, SIGMOD Conference.

[11]  Evaggelia Pitoura,et al.  YmalDB: exploring relational databases via result-driven recommendations , 2013, The VLDB Journal.

[12]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[13]  Tova Milo,et al.  REACT: Context-Sensitive Recommendations for Data Analysis , 2016, SIGMOD Conference.

[14]  James Cheney,et al.  Provenance in Databases: Why, How, and Where , 2009, Found. Trends Databases.

[15]  Ilkay Altintas,et al.  Provenance Collection Support in the Kepler Scientific Workflow System , 2006, IPAW.