Entanglement manipulation beyond local operations and classical communication

When a quantum system is distributed to spatially separated parties, it is natural to consider how the system evolves when the parties perform local quantum operations with classical communication (LOCC). However, the structure of LOCC channels is exceedingly complex, leaving many important physical problems unsolved. In this paper, we consider generalized resource theories of entanglement based on different relaxations to the class of LOCC. The behavior of various entanglement measures is studied under non-entangling channels, as well as the newly introduced classes of dually non-entangling and positive partial transpose (PPT)-preserving channels. In an effort to better understand the nature of LOCC bound entanglement, we study the problem of entanglement distillation in these generalized resource theories. We first show that unlike LOCC, general non-entangling maps can be superactivated, in the sense that two copies of the same non-entangling map can, nevertheless, be entangling. On the single-copy level, we demonstrate that every NPT entangled state can be converted into an LOCC-distillable state using channels that are both dually non-entangling and having a PPT Choi representation and that every state can be converted into an LOCC-distillable state using operations belonging to any family of polytopes that approximate LOCC. We then turn to the stochastic convertibility of multipartite pure states and show that any two states can be interconverted by any polytope approximation to the set of separable channels. Finally, as an analog to k-positive maps, we introduce and analyze the set of k-non-entangling channels.

[1]  Mark W. Girard On directional derivatives of trace functionals of the form A↦Tr(Pf(A)) , 2018, Linear Algebra and its Applications.

[2]  Fernando G. S. L. Brandão,et al.  A Reversible Theory of Entanglement and its Relation to the Second Law , 2007, 0710.5827.

[3]  Carl A. Miller,et al.  Matrix pencils and entanglement classification , 2009, 0911.1803.

[4]  M. Horodecki,et al.  Irreversibility for all bound entangled states. , 2005, Physical Review Letters.

[5]  Lin Chen,et al.  Coherence and entanglement measures based on Rényi relative entropies , 2017, 1706.00390.

[6]  K. Audenaert,et al.  Entanglement cost under positive-partial-transpose-preserving operations. , 2003, Physical review letters.

[7]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[8]  F. Hiai,et al.  Introduction to Matrix Analysis and Applications , 2014 .

[9]  M. Horodecki,et al.  Inseparable Two Spin- 1 2 Density Matrices Can Be Distilled to a Singlet Form , 1997 .

[10]  Mark W. Girard,et al.  On convex optimization problems in quantum information theory , 2014, 1402.0034.

[11]  Milán Mosonyi,et al.  On the Quantum Rényi Relative Entropies and Related Capacity Formulas , 2009, IEEE Transactions on Information Theory.

[12]  M. Plenio,et al.  Quantifying Entanglement , 1997, quant-ph/9702027.

[13]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[14]  R. Bhatia Matrix Analysis , 1996 .

[15]  A. Shimony Degree of Entanglement a , 1995 .

[16]  E. Rains Entanglement purification via separable superoperators , 1997, quant-ph/9707002.

[17]  M. Horodecki,et al.  Separability of mixed states: necessary and sufficient conditions , 1996, quant-ph/9605038.

[18]  A. Kitaev,et al.  Universal quantum computation with ideal Clifford gates and noisy ancillas (14 pages) , 2004, quant-ph/0403025.

[19]  J. Cirac,et al.  Entangling operations and their implementation using a small amount of entanglement. , 2000, Physical review letters.

[20]  L. Gurvits,et al.  Largest separable balls around the maximally mixed bipartite quantum state , 2002, quant-ph/0204159.

[21]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[22]  G. Vidal Entanglement of pure states for a single copy , 1999, quant-ph/9902033.

[23]  E. Rains Erratum: Bound on distillable entanglement [Phys. Rev. A 60, 179 (1999)] , 2000 .

[24]  M. Wolf,et al.  Distillability via protocols respecting the positivity of partial transpose. , 2001, Physical review letters.

[25]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[26]  Michal Horodecki,et al.  A Few Steps More Towards NPT Bound Entanglement , 2007, IEEE Transactions on Information Theory.

[27]  Norbert Lütkenhaus,et al.  Nonlinear entanglement witnesses. , 2006, Physical review letters.

[28]  G. Gour,et al.  Quantum resource theories , 2018, Reviews of Modern Physics.

[29]  G. Vidal,et al.  Robustness of entanglement , 1998, quant-ph/9806094.

[30]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[31]  F. Brandão,et al.  Entanglement theory and the second law of thermodynamics , 2008, 0810.2319.

[32]  F. Brandão,et al.  Faithful Squashed Entanglement , 2010, 1010.1750.

[33]  J. Cirac,et al.  Distillability and partial transposition in bipartite systems , 1999, quant-ph/9910022.

[34]  G. Lindblad Completely positive maps and entropy inequalities , 1975 .

[35]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[36]  Runyao Duan,et al.  Tripartite entanglement transformations and tensor rank. , 2008, Physical review letters.

[37]  J. Cirac,et al.  Irreversibility in asymptotic manipulations of entanglement. , 2001, Physical review letters.

[38]  Johan Håstad Tensor Rank is NP-Complete , 1990, J. Algorithms.

[39]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[40]  Lawrence M. Ioannou,et al.  Quantum separability and entanglement detection via entanglement-witness search and global optimization , 2006 .

[41]  Martin B. Plenio,et al.  An introduction to entanglement measures , 2005, Quantum Inf. Comput..

[42]  E. Bronstein Approximation of convex sets by polytopes , 2008 .

[43]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[44]  M. Horodecki,et al.  Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? , 1998, quant-ph/9801069.

[45]  Laura Mančinska,et al.  Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask) , 2012, 1210.4583.

[46]  E. Rains RIGOROUS TREATMENT OF DISTILLABLE ENTANGLEMENT , 1998, quant-ph/9809078.

[47]  J. Smolin Four-party unlockable bound entangled state , 2000, quant-ph/0001001.

[48]  O. Gühne,et al.  Nonlinear entanglement witnesses, covariance matrices and the geometry of separable states , 2007 .

[49]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.