n-bit stabilization of n-dimensional nonlinear systems in feedforward form

A methodology is presented which allows to design encoder, decoder and controller for stabilizing a nonlinear system in feedforward form using saturated encoded state feedback basically under standard assumption, namely local Lipschitz property of the vector field defining the system. n (respectively, n + 1) bits are used to encode the state information needed to the purpose of semiglobally (globally) stabilizing an n-dimensional system. Minimality of the data rate is discussed.

[1]  Bruce A. Francis,et al.  Limited Data Rate in Control Systems with Networks , 2002 .

[2]  Daniel Liberzon,et al.  Hybrid feedback stabilization of systems with quantized signals , 2003, Autom..

[3]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[4]  D. Delchamps Extracting state information form a quantized output record , 1990 .

[5]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[6]  John Baillieul,et al.  Feedback Designs in Information-Based Control , 2002 .

[7]  L. Praly,et al.  Adding integrations, saturated controls, and stabilization for feedforward systems , 1996, IEEE Trans. Autom. Control..

[8]  Alberto Isidori,et al.  Stabilizability by state feedback implies stabilizability by encoded state feedback , 2004, Syst. Control. Lett..

[9]  R. Brockett,et al.  Systems with finite communication bandwidth constraints. I. State estimation problems , 1997, IEEE Trans. Autom. Control..

[10]  Joono Sur,et al.  State Observer for Linear Time-Invariant Systems With Quantized Output , 1998 .

[11]  Antonio Bicchi,et al.  On the reachability of quantized control systems , 2002, IEEE Trans. Autom. Control..

[12]  K. Åström,et al.  Comparison of Riemann and Lebesgue sampling for first order stochastic systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[13]  Wing Shing Wong,et al.  Systems with finite communication bandwidth constraints. II. Stabilization with limited information feedback , 1999, IEEE Trans. Autom. Control..

[14]  João Pedro Hespanha,et al.  Stabilization of nonlinear systems with limited information feedback , 2005, IEEE Transactions on Automatic Control.

[15]  A. Teel A nonlinear small gain theorem for the analysis of control systems with saturation , 1996, IEEE Trans. Autom. Control..

[16]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[17]  L2 performance induced by feedbacks with multiple saturations , 1996 .

[18]  K. Loparo,et al.  Active probing for information in control systems with quantized state measurements: a minimum entropy approach , 1997, IEEE Trans. Autom. Control..

[19]  C. De Persis,et al.  A note on stabilization via communication channel in the presence of input constraints , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[20]  I. Petersen,et al.  Multi-rate stabilization of multivariable discrete-time linear systems via a limited capacity communication channel , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[21]  F. Fagnani,et al.  Stability analysis and synthesis for scalar linear systems with a quantized feedback , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[22]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[23]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[24]  P. Kokotovic,et al.  Constructive Lyapunov stabilization of nonlinear cascade systems , 1996, IEEE Trans. Autom. Control..