Authenticated multi-user quantum key distribution with single particles

Quantum key distribution (QKD) has been growing rapidly in recent years and becomes one of the hottest issues in quantum information science. During the implementation of QKD on a network, identity authentication has been one main problem. In this paper, an efficient authenticated multi-user quantum key distribution (MQKD) protocol with single particles is proposed. In this protocol, any two users on a quantum network can perform mutual authentication and share a secure session key with the assistance of a semi-honest center. Meanwhile, the particles, which are used as quantum information carriers, are not required to be stored, therefore the proposed protocol is feasible with current technology. Finally, security analysis shows that this protocol is secure in theory.

[1]  D. J. Guan,et al.  A practical protocol for three-party authenticated quantum key distribution , 2014, Quantum Information Processing.

[2]  V. Scarani,et al.  The security of practical quantum key distribution , 2008, 0802.4155.

[3]  Larry Carter,et al.  New Hash Functions and Their Use in Authentication and Set Equality , 1981, J. Comput. Syst. Sci..

[4]  Song Lin,et al.  Multi-user quantum key distribution based on Bell states with mutual authentication , 2013 .

[5]  Xiongfeng Ma,et al.  Decoy state quantum key distribution. , 2004, Physical review letters.

[6]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[7]  Guihua Zeng,et al.  Secure networking quantum key distribution schemes with Greenberger–Horne–Zeilinger states , 2010 .

[8]  Deng Fu-Guo,et al.  A Theoretical Scheme for Multi-user Quantum Key Distribution with N Einstein-Podolsky-Rosen Pairs on a Passive Optical Network , 2002 .

[9]  Fuguo Deng,et al.  Improving the security of secure direct communication based on the secret transmitting order of particles , 2006, quant-ph/0612016.

[10]  H. Weinfurter,et al.  The SECOQC quantum key distribution network in Vienna , 2009, 2009 35th European Conference on Optical Communication.

[11]  Renato Renner,et al.  The ultimate physical limits of privacy , 2014, Nature.

[12]  Fei Gao,et al.  A simple participant attack on the brádler-dušek protocol , 2007, Quantum Inf. Comput..

[13]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[14]  Fei Gao,et al.  Comment on “Multiparty quantum secret sharing of classical messages based on entanglement swapping” , 2007 .

[15]  Yang Liu,et al.  Superconducting nanowire single-photon detection system and demonstration in quantum key distribution , 2013 .

[16]  Q. Cai Eavesdropping on the two-way quantum communication protocols with invisible photons , 2005, quant-ph/0508002.

[17]  Shor,et al.  Simple proof of security of the BB84 quantum key distribution protocol , 2000, Physical review letters.

[18]  Wei Chen,et al.  Delayed error verification in quantum key distribution , 2014 .

[19]  Jan-Åke Larsson,et al.  Security Aspects of the Authentication Used in Quantum Cryptography , 2008, IEEE Transactions on Information Theory.

[20]  Xiongfeng Ma,et al.  Practical issues in quantum-key-distribution postprocessing , 2009, 0910.0312.

[21]  S. Barnett,et al.  Multi-user Quantum Cryptography on Optical Networks , 1995 .

[22]  Anthony Chefles,et al.  Unambiguous discrimination between linearly independent quantum states , 1998, quant-ph/9807022.

[23]  Tzonelih Hwang,et al.  Provably Secure Three-Party Authenticated Quantum Key Distribution Protocols , 2007, IEEE Transactions on Dependable and Secure Computing.

[24]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[25]  Chuan Wang,et al.  Experimental realization of quantum cryptography communication in free space , 2005 .

[26]  Hua Zhang,et al.  Comment on quantum private comparison protocols with a semi-honest third party , 2012, Quantum Information Processing.

[27]  James F. Dynes,et al.  A quantum access network , 2013, Nature.

[28]  H. Bechmann-Pasquinucci,et al.  Quantum cryptography , 2001, quant-ph/0101098.

[29]  Xiang‐Bin Wang,et al.  Beating the PNS attack in practical quantum cryptography , 2004 .

[30]  M. Peev,et al.  A NOVEL PROTOCOL-AUTHENTICATION ALGORITHM RULING OUT A MAN-IN-THE MIDDLE ATTACK IN QUANTUM CRYPTOGRAPHY , 2004 .

[31]  M. Bourennane,et al.  Authority-based user authentication in quantum key distribution , 2000 .

[32]  Deng Fu-Guo,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[33]  Yonggang Wang,et al.  FPGA based digital phase-coding quantum key distribution system , 2015 .

[34]  Zhiwei Sun,et al.  QUANTUM SECURE DIRECT COMMUNICATION WITH QUANTUM IDENTIFICATION , 2012 .

[35]  Wei Chen,et al.  Decoy-state measurement-device-independent quantum key distribution with mismatched-basis statistics , 2015 .

[36]  Long Gui-lu,et al.  Quantum Key Distribution Network Based on Differential Phase Shift , 2007 .

[37]  Mingsheng Ying,et al.  Unambiguous discrimination among quantum operations , 2006 .

[38]  P. Xue,et al.  Conditional efficient multiuser quantum cryptography network , 2002 .

[39]  Chao Zheng,et al.  Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs , 2014 .

[40]  周萍,et al.  Efficient Quantum Cryptography Network without Entanglement and Quantum Memory , 2006 .

[41]  TianYu Ye Robust quantum dialogue based on a shared auxiliary logical Bell state against collective noise , 2015 .

[42]  Won-Young Hwang Quantum key distribution with high loss: toward global secure communication. , 2003, Physical review letters.

[43]  J. H. Müller,et al.  Quantum memories , 2010, 1003.1107.

[44]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[45]  Guang-Can Guo,et al.  Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons , 2015 .

[46]  Jongin Lim,et al.  N quantum channels are sufficient for Multi-user Quantum Key Distribution protocol between n users , 2010 .

[47]  Michael K. Reiter,et al.  Fair Exchange with a Semi-Trusted Third Party (extended abstract) , 1997, CCS.

[48]  Guihua Zeng,et al.  Identity verification in quantum key distribution , 2000 .

[49]  Guo Banghong,et al.  Spin-orbit hybrid entanglement quantum key distribution scheme , 2014 .

[50]  Lo,et al.  Unconditional security of quantum key distribution over arbitrarily long distances , 1999, Science.

[51]  M. Dušek,et al.  Quantum identification system , 1998, quant-ph/9809024.