Motion-Dependent Representation of Space in Area MT+

How is visual space represented in cortical area MT+? At a relatively coarse scale, the organization of MT+ is debated; retinotopic, spatiotopic, or mixed representations have all been proposed. However, none of these representations entirely explain the perceptual localization of objects at a fine spatial scale--a scale relevant for tasks like navigating or manipulating objects. For example, perceived positions of objects are strongly modulated by visual motion; stationary flashes appear shifted in the direction of nearby motion. Does spatial coding in MT+ reflect these shifts in perceived position? We performed an fMRI experiment employing this "flash-drag" effect and found that flashes presented near motion produced patterns of activity similar to physically shifted flashes in the absence of motion. This reveals a motion-dependent change in the neural representation of object position in human MT+, a process that could help compensate for perceptual and motor delays in localizing objects in dynamic scenes.

[1]  David Whitney,et al.  The influence of visual motion on perceived position , 2002, Trends in Cognitive Sciences.

[2]  Gerrit W. Maus,et al.  Does Area V3A Predict Positions of Moving Objects? , 2010, Front. Psychology.

[3]  J. Bisley,et al.  Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. , 2009, Journal of neurophysiology.

[4]  K. D. De Valois,et al.  Vernier acuity with stationary moving Gabors. , 1991, Vision research.

[5]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[6]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[7]  Fuminori Ono,et al.  Time Dilation Induced by Object Motion is Based on Spatiotopic but not Retinotopic Positions , 2011, Front. Psychology.

[8]  David Whitney,et al.  The influence of visual motion on fast reaching movements to a stationary object , 2003, Nature.

[9]  Romi Nijhawan,et al.  Visual prediction: Psychophysics and neurophysiology of compensation for time delays , 2008, Behavioral and Brain Sciences.

[10]  Ravi S. Menon,et al.  Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. , 2001, Journal of neurophysiology.

[11]  Felix Wichmann,et al.  The psychometric function: II. Bootstrap-based confidence intervals and sampling , 2001, Perception & psychophysics.

[12]  Gerrit W. Maus,et al.  The perceived position of moving objects: transcranial magnetic stimulation of area MT+ reduces the flash-lag effect. , 2013, Cerebral cortex.

[13]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[14]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[15]  H. Gomi,et al.  Space and Time in Perception and Action: The utility of visual motion for goal-directed reaching , 2010 .

[16]  N. Logothetis The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal , 2003, The Journal of Neuroscience.

[17]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[18]  Bart Krekelberg,et al.  Summation of Visual Motion across Eye Movements Reflects a Nonspatial Decision Mechanism , 2010, The Journal of Neuroscience.

[19]  T. Womelsdorf,et al.  Dynamic shifts of visual receptive fields in cortical area MT by spatial attention , 2006, Nature Neuroscience.

[20]  V. Ramachandran,et al.  Illusory Displacement of Equiluminous Kinetic Edges , 1990, Perception.

[21]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[22]  Nancy Kanwisher,et al.  Cerebral Cortex doi:10.1093/cercor/bhr357 Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location , 2011 .

[23]  Terrence J Sejnowski,et al.  Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. , 2007, Journal of vision.

[24]  Frank Bremmer,et al.  Receptive Field Positions in Area MT during Slow Eye Movements , 2011, The Journal of Neuroscience.

[25]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[26]  Friedrich W. Fröhlich,et al.  Über die Messung der Empfindungszeit , 1930 .

[27]  T. Womelsdorf,et al.  Receptive Field Shift and Shrinkage in Macaque Middle Temporal Area through Attentional Gain Modulation , 2008, The Journal of Neuroscience.

[28]  Mazyar Fallah,et al.  A Motion-Dependent Distortion of Retinotopy in Area V4 , 2006, Neuron.

[29]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[30]  Y. Dan,et al.  Asymmetry in Visual Cortical Circuits Underlying Motion-Induced Perceptual Mislocalization , 2004, The Journal of Neuroscience.

[31]  C. Gross,et al.  Visual topography of striate projection zone (MT) in posterior superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[32]  Myrka Zagoa,et al.  Visuomotor extrapolation , 2008, Behavioral and Brain Sciences.

[33]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[34]  David Whitney,et al.  The Emergence of Perceived Position in the Visual System , 2011, Journal of Cognitive Neuroscience.

[35]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[37]  Romi Nijhawan,et al.  Motion extrapolation in catching , 1994, Nature.

[38]  Robert J. Moorhead,et al.  Visualization of fluid flows in virtual environments , 2004, J. Vis..

[39]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[40]  Masahiro Takei,et al.  Human resource development and visualization , 2009, J. Vis..

[41]  David Whitney,et al.  The motion-induced shift in the perceived location of a grating also shifts its aftereffect. , 2011, Journal of vision.

[42]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[43]  Maria Concetta Morrone,et al.  Visual motion distorts visual and motor space. , 2012, Journal of vision.

[44]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[45]  David Whitney,et al.  Visually guided reaching depends on motion area MT+. , 2007, Cerebral cortex.

[46]  Paul V McGraw,et al.  Motion-Sensitive Neurones in V5/MT Modulate Perceived Spatial Position , 2004, Current Biology.

[47]  Shin'ya Nishida,et al.  Large-Field Visual Motion Directly Induces an Involuntary Rapid Manual Following Response , 2005, The Journal of Neuroscience.

[48]  David Whitney,et al.  Motion distorts visual space: shifting the perceived position of remote stationary objects , 2000, Nature Neuroscience.

[49]  F A Wichmann,et al.  Ning for Helpful Comments and Suggestions. This Paper Benefited Con- Siderably from Conscientious Peer Review, and We Thank Our Reviewers the Psychometric Function: I. Fitting, Sampling, and Goodness of Fit , 2001 .

[50]  James W Bisley,et al.  A Lack of Anticipatory Remapping of Retinotopic Receptive Fields in the Middle Temporal Area , 2011, The Journal of Neuroscience.

[51]  Michael J. Berry,et al.  Synchronized Firing among Retinal Ganglion Cells Signals Motion Reversal , 2007, Neuron.

[52]  David Whitney,et al.  Voluntary attention modulates motion-induced mislocalization. , 2011, Journal of vision.

[53]  W. K. Simmons,et al.  Circular analysis in systems neuroscience: the dangers of double dipping , 2009, Nature Neuroscience.

[54]  David C. Burr,et al.  Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention , 2011, PloS one.

[55]  A. Ishai,et al.  Distributed and Overlapping Representations of Faces and Objects in Ventral Temporal Cortex , 2001, Science.