Air separation control technology

Achieving high performance process control (HPPC) requires that the control system operate the plant at optimal efficiency over the full range of steady state and dynamic conditions. Air separation processes present particular challenges because of their energy intensive nature and demanding production schedules. The HPPC challenges for both cryogenic and adsorption processes are presented, recent applicable research is summarized, and directions for future research are proposed. The value of the operability index to improved HPPC is also presented and discussed.

[1]  Lawrence Megan,et al.  Dynamic modeling and linear model predictive control of gas pipeline networks , 2001 .

[2]  Derya Uztürk,et al.  Inherent Dynamic Operability of Processes: General Definitions and Analysis of SISO Cases , 2002 .

[3]  Lawrence Megan,et al.  Low-order dynamic modeling of cryogenic distillation columns based on nonlinear wave phenomenon , 2001 .

[4]  Chris C. K. Beh,et al.  The Dynamic Response and Characteristics of an Oxygen Vacuum Swing Adsorption Process to Step Perturbations. Part 1. Open Loop Responses , 2003 .

[5]  Sebastian Engell,et al.  A case study for control structure selection: air separation plant , 2000 .

[6]  Mayuresh V. Kothare,et al.  An e!cient o"-line formulation of robust model predictive control using linear matrix inequalities (cid:1) , 2003 .

[7]  David R. Vinson,et al.  On the operability of continuous processes , 2001 .

[8]  D. R. Vinson,et al.  Computer Control of Unattended Plants , 1984 .

[9]  Ignacio E. Grossmann,et al.  A model predictive control strategy for supply chain optimization , 2003, Comput. Chem. Eng..

[10]  Efstratios N. Pistikopoulos,et al.  Parametric controllers in simultaneous process and control design optimization , 2003 .

[11]  Ian David Lockhart Bogle,et al.  Computers and Chemical Engineering , 2008 .

[12]  Brian Roffel,et al.  First principles dynamic modeling and multivariable control of a cryogenic distillation process , 2000 .

[13]  Jorge Otávio Trierweiler,et al.  RPN tuning strategy for model predictive control , 2001 .

[14]  D. R. Vinson,et al.  Computer Automated Start-Up and Shutdown of an Air Separation Plant , 1985 .

[15]  Marianthi G. Ierapetritou,et al.  Process synthesis optimization and flexibility evaluation of air separation cycles , 2005 .

[16]  Georgakis Christos,et al.  Chapter A4 - A geometric approach for process operability analysis , 2004 .

[17]  R. Ocampo-Pérez,et al.  Adsorption of Fluoride from Water Solution on Bone Char , 2007 .

[18]  Efstratios N. Pistikopoulos,et al.  Design of robust model-based controllers via parametric programming , 2004, Autom..

[19]  Paul A. Webley,et al.  Perturbation techniques for accelerated convergence of cyclic steady state (CSS) in oxygen VSA simulations , 2002 .

[20]  Christos Georgakis,et al.  A new measure of process output controllability , 1998 .

[21]  Michael C. Georgiadis,et al.  The integration of process design and control , 2004 .

[22]  Lawrence Megan,et al.  Nonlinear State Estimation and Model Predictive Control of Nitrogen Purification Columns , 2005 .

[23]  Lorenz T. Biegler,et al.  Simulation and optimization of pressure-swing adsorption systems for air separation , 2003 .

[24]  D.E. Rivera,et al.  A novel model predictive control algorithm for supply chain management in semiconductor manufacturing , 2005, Proceedings of the 2005, American Control Conference, 2005..

[25]  Lawrence Megan,et al.  Compartmental modeling of high purity air separation columns , 2005, Comput. Chem. Eng..