Segmentation of extreme ultraviolet solar images via multichannel fuzzy clustering

Abstract The study of the variability of the solar corona and the monitoring of its traditional regions (Coronal Holes, Quiet Sun and Active Regions) are of great importance in astrophysics as well as in view of the Space Weather and Space Climate applications. Here we propose a multichannel unsupervised spatially constrained fuzzy clustering algorithm that automatically segments EUV solar images into Coronal Holes, Quiet Sun and Active Regions. Fuzzy logic allows to manage the various noises present in the images and the imprecision in the definition of the above regions. The process is fast and automatic. It is applied to SoHO–EIT images taken from February 1997 till May 2005, i.e. along almost a full solar cycle. Results in terms of areas and intensity estimations are consistent with previous knowledge. The method reveal the rotational and other mid-term periodicities in the extracted time series across solar cycle 23. Further, such an approach paves the way to bridging observations between spatially resolved data from imaging telescopes and time series from radiometers. Time series resulting form the segmentation of EUV coronal images can indeed provide an essential component in the process of reconstructing the solar spectrum.

[1]  Thomas K. Pilgram,et al.  Validation of magnetic resonance imaging (MRI) multispectral tissue classification. , 1991, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[2]  M. Steinegger,et al.  On the Intensity Thresholds of the Network and Plage Regions , 1998 .

[3]  Michael Turmon,et al.  Statistical Pattern Recognition for Labeling Solar Active Regions: Application to SOHO/MDI Imagery , 2002 .

[4]  J. Aboudarham,et al.  Filament Recognition and Image Cleaning on Meudon Hα Spectroheliograms , 2005 .

[5]  A. Dmitriev,et al.  Global Asymmetry of the Sun Observed in the Extreme Ultraviolet Radiation , 2001 .

[6]  Shu Hung Leung,et al.  Lip image segmentation using fuzzy clustering incorporating an elliptic shape function , 2004, IEEE Transactions on Image Processing.

[7]  Jean-Pierre Delaboudiniere,et al.  Evolution of Chromospheric Structures: How Chromospheric Structures Contribute to the Solar He II 30.4 Nanometer Irradiance and Variability , 1999 .

[8]  E. Bratsolis,et al.  SOLAR IMAGE SEGMENTATION BY USE OF MEAN FIELD FAST ANNEALING , 1998 .

[9]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[10]  Gary A. Chapman,et al.  Solar Feature Identification using Contrasts and Contiguity , 2001 .

[11]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[12]  James M. Keller,et al.  The possibilistic C-means algorithm: insights and recommendations , 1996, IEEE Trans. Fuzzy Syst..

[13]  A. Ortiz,et al.  Solar cycle evolution of the contrast of small photospheric magnetic elements , 2005 .

[14]  Haimin Wang,et al.  Development of an Automatic Filament Disappearance Detection System , 2002 .

[15]  John R. Smith,et al.  Solarspire: querying temporal solar imagery by content , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[16]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[17]  Laurent Demanet,et al.  Application of the 2-D wavelet transform to astrophysical images , 2002 .

[18]  A. Bijaoui,et al.  A Multiscale Vision Model applied to analyze EIT images of the solar corona , 2001 .

[20]  Sami K. Solanki,et al.  The 1.3-year and 156-day periodicities in sunspot data: Wavelet analysis suggests a common origin , 2002 .

[21]  Vincent Barra,et al.  Segmentation, Tracking and Characterization of Solar Features from EIT Solar Corona Images , 2009, SCIA.

[22]  Punya Thitimajshima,et al.  Multiresolution fuzzy clustering for SAR image segmentation , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[23]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[24]  Manuel Vázquez,et al.  SIMULATION OF SEEING INFLUENCES ON THE PHOTOMETRIC DETERMINATION OF SUNSPOT AREAS , 1997 .

[25]  Valentina V. Zharkova,et al.  Automated Recognition of Sunspots on the SOHO/MDI White Light Solar Images , 2004, KES.

[26]  J. Valdés-Galicia,et al.  Mid-Term Periodicities in the Solar Magnetic Flux , 2006 .

[27]  W E Phillips,et al.  Application of fuzzy c-means segmentation technique for tissue differentiation in MR images of a hemorrhagic glioblastoma multiforme. , 1995, Magnetic Resonance Imaging.

[28]  T. Dudok de Wit,et al.  Fast Segmentation of Solar Extreme Ultraviolet Images , 2006 .

[29]  Francesco Berrilli,et al.  Spatial Clustering of Photospheric Structures , 2005 .

[30]  L O Hall,et al.  Medical image analysis with fuzzy models , 1997, Statistical methods in medical research.

[31]  Mariusz J. Nieniewski Segmentation of extreme ultraviolet (SOHO) Sun images by means of watershed and region merging , 2002 .

[32]  Arnold Hanslmeier,et al.  Automatic Image Processing in the Frame of a Solar Flare Alerting System , 2000 .

[33]  Farid Melgani,et al.  An explicit fuzzy supervised classification method for multispectral remote sensing images , 2000, IEEE Trans. Geosci. Remote. Sens..

[34]  K. Revathy,et al.  Fractal-Based Fuzzy Technique For Detection Of Active Regions From Solar Images , 2005 .

[35]  Peter N. Brandt,et al.  On Novel Methods to Determine Areas of Sunspots from Photoheliograms , 1997 .

[36]  Valentina V. Zharkova,et al.  A Neural-Network Technique for Recognition of Filaments in Solar Images , 2003, KES.

[37]  Arnold Hanslmeier,et al.  Automatic Image Segmentation and Feature Detection in Solar Full-Disk Images , 2000 .