AA.AG@helix.ends: A:A and A:G base-pairs at the ends of 16 S and 23 S rRNA helices.

This study reveals that AA and AG oppositions occur frequently at the ends of helices in RNA crystal and NMR structures in the PDB database and in the 16 S and 23 S rRNA comparative structure models, with the G usually 3' to the helix for the AG oppositions. In addition, these oppositions are frequently base-paired and usually in the sheared conformation, although other conformations are present in NMR and crystal structures. These A:A and A:G base-pairs are present in a variety of structural environments, including GNRA tetraloops, E and E-like loops, interfaced between two helices that are coaxially stacked, tandem G:A base-pairs, U-turns, and adenosine platforms. Finally, given structural studies that reveal conformational rearrangements occurring in regions of the RNA with AA and AG oppositions at the ends of helices, we suggest that these conformationally unique helix extensions might be associated with functionally important structural rearrangements.

[1]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[2]  D Gautheret,et al.  Predicting U-turns in ribosomal RNA with comparative sequence analysis. , 2000, Journal of molecular biology.

[3]  H. Heus,et al.  A network of heterogeneous hydrogen bonds in GNRA tetraloops. , 1996, Journal of molecular biology.

[4]  A. E. Walter,et al.  Sequence dependence of stability for coaxial stacking of RNA helixes with Watson-Crick base paired interfaces. , 1994, Biochemistry.

[5]  D. Patel,et al.  Stitching together RNA tertiary architectures. , 1999, Journal of molecular biology.

[6]  D. Turner,et al.  Effects of GA mismatches on the structure and thermodynamics of RNA internal loops. , 1990, Biochemistry.

[7]  D Gautheret,et al.  A major family of motifs involving G.A mismatches in ribosomal RNA. , 1994, Journal of molecular biology.

[8]  D. Turner,et al.  Solution structure of (rGGCAGGCC)2 by two-dimensional NMR and the iterative relaxation matrix approach. , 1996, Biochemistry.

[9]  L. Kay,et al.  α Helix-RNA Major Groove Recognition in an HIV-1 Rev Peptide-RRE RNA Complex , 1996, Science.

[10]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[11]  J. Feigon,et al.  Structural change in Rev responsive element RNA of HIV-1 on binding Rev peptide. , 1996, Journal of molecular biology.

[12]  I. Wool,et al.  The conformation of the sarcin/ricin loop from 28S ribosomal RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[13]  E. Westhof,et al.  A common motif organizes the structure of multi-helix loops in 16 S and 23 S ribosomal RNAs. , 1998, Journal of molecular biology.

[14]  R. Gutell,et al.  Higher order structure in ribosomal RNA. , 1986, The EMBO journal.

[15]  C. Kundrot,et al.  RNA Tertiary Structure Mediation by Adenosine Platforms , 1996, Science.

[16]  I. Tinoco,et al.  Conformation of a non-frameshifting RNA pseudoknot from mouse mammary tumor virus. , 1996, Journal of molecular biology.

[17]  D. Turner,et al.  Structure of (rGGCGAGCC)2 in solution from NMR and restrained molecular dynamics. , 1993, Biochemistry.

[18]  Sung-Hou Kim Crystal Structure of Yeast tRNA phe and General Structural Features of Other tRNAs , 1979 .

[19]  A. E. Walter,et al.  Thermodynamics of coaxially stacked helixes with GA and CC mismatches. , 1996, Biochemistry.

[20]  R. Lavery,et al.  Defining the structure of irregular nucleic acids: conventions and principles. , 1989, Journal of biomolecular structure & dynamics.

[21]  J. Sabina,et al.  Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. , 1999, Journal of molecular biology.

[22]  H. Bernstein Recent changes to RasMol, recombining the variants. , 2000, Trends in biochemical sciences.

[23]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[24]  A. Ellington,et al.  Crystal structures of a series of RNA aptamers complexed to the same protein target , 1998, Nature Structural Biology.

[25]  Thomas A. Steitz,et al.  RNA tertiary interactions in the large ribosomal subunit: The A-minor motif , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  F. Michel,et al.  Frequent use of the same tertiary motif by self‐folding RNAs. , 1995, The EMBO journal.

[27]  T. Steitz,et al.  Crystal structure of the ribosomal RNA domain essential for binding elongation factors. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[28]  G. Varani,et al.  Structural basis of the RNA‐binding specificity of human U1A protein , 1997, The EMBO journal.

[29]  J L Sussman,et al.  Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. , 1978, Journal of molecular biology.

[30]  D Gautheret,et al.  Inferring the conformation of RNA base pairs and triples from patterns of sequence variation. , 1997, Nucleic acids research.

[31]  J. Sussman,et al.  Adenine-guanine base pairing ribosomal RNA. , 1982, Nucleic acids research.

[32]  Carl R. Woese,et al.  4 Probing RNA Structure, Function, and History by Comparative Analysis , 1993 .

[33]  T. Cech,et al.  A preorganized active site in the crystal structure of the Tetrahymena ribozyme. , 1998, Science.

[34]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[35]  R. Gutell,et al.  A story: unpaired adenosine bases in ribosomal RNAs. , 2000, Journal of molecular biology.

[36]  E Westhof,et al.  Involvement of a GNRA tetraloop in long-range RNA tertiary interactions. , 1994, Journal of molecular biology.

[37]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[38]  P. Moore,et al.  Structural motifs in RNA. , 1999, Annual review of biochemistry.

[39]  V. Ramakrishnan,et al.  Recognition of Cognate Transfer RNA by the 30S Ribosomal Subunit , 2001, Science.

[40]  E Westhof,et al.  New loop-loop tertiary interactions in self-splicing introns of subgroup IC and ID: a complete 3D model of the Tetrahymena thermophila ribozyme. , 1996, Chemistry & biology.

[41]  G. Varani,et al.  Conformation and dynamics of an RNA internal loop. , 1989, Biochemistry.

[42]  F. Michel,et al.  Rules for RNA recognition of GNRA tetraloops deduced by in vitro selection: comparison with in vivo evolution , 1997, The EMBO journal.

[43]  I. Tinoco,et al.  The structure of an RNA pseudoknot that causes efficient frameshifting in mouse mammary tumor virus. , 1995, Journal of molecular biology.

[44]  G. Varani,et al.  The conformation of loop E of eukaryotic 5S ribosomal RNA. , 1993, Biochemistry.

[45]  D Gautheret,et al.  G.U base pairing motifs in ribosomal RNA. , 1995, RNA.

[46]  George M. Church,et al.  CRYSTAL STRUCTURE OF YEAST PHENYLALANINE T-RNA. I.CRYSTALLOGRAPHIC REFINEMENT , 1979 .

[47]  D Gautheret,et al.  Identification of base-triples in RNA using comparative sequence analysis. , 1995, Journal of molecular biology.

[48]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[49]  R A Sayle,et al.  RASMOL: biomolecular graphics for all. , 1995, Trends in biochemical sciences.

[50]  C. Kundrot,et al.  Crystal Structure of a Group I Ribozyme Domain: Principles of RNA Packing , 1996, Science.

[51]  E Westhof,et al.  Modeling RNA tertiary structure from patterns of sequence variation. , 2000, Methods in enzymology.

[52]  R. Gutell,et al.  Detailed analysis of the higher-order structure of 16S-like ribosomal ribonucleic acids. , 1983, Microbiological reviews.

[53]  R. Gutell,et al.  Lessons from an evolving rRNA: 16S and 23S rRNA structures from a comparative perspective. , 1994, Microbiological reviews.

[54]  C R Woese,et al.  Architecture of ribosomal RNA: constraints on the sequence of "tetra-loops". , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. S. Fields,et al.  An analysis of large rRNA sequences folded by a thermodynamic method. , 1996, Folding & design.

[56]  R. Gutell,et al.  Comparative anatomy of 16-S-like ribosomal RNA. , 1985, Progress in nucleic acid research and molecular biology.

[57]  I. Wool,et al.  The two faces of the Escherichia coli 23 S rRNA sarcin/ricin domain: the structure at 1.11 A resolution. , 1999, Journal of molecular biology.

[58]  Jennifer A. Doudna,et al.  A universal mode of helix packing in RNA , 2001, Nature Structural Biology.

[59]  Michael Zuker,et al.  Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide , 1999 .

[60]  A. E. Walter,et al.  Coaxial stacking of helixes enhances binding of oligoribonucleotides and improves predictions of RNA folding. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[61]  R Lavery,et al.  The definition of generalized helicoidal parameters and of axis curvature for irregular nucleic acids. , 1988, Journal of biomolecular structure & dynamics.

[62]  D. Patel,et al.  Deep penetration of an α-helix into a widened RNA major groove in the HIV-1 rev peptide–RNA aptamer complex , 1996, Nature Structural Biology.

[63]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[64]  R. Gutell,et al.  A comparison of thermodynamic foldings with comparatively derived structures of 16S and 16S-like rRNAs. , 1995, RNA.

[65]  D. Turner,et al.  Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs. , 1999, Journal of molecular biology.

[66]  E. Westhof,et al.  Modelling of the three-dimensional architecture of group I catalytic introns based on comparative sequence analysis. , 1990, Journal of molecular biology.

[67]  A. Rich,et al.  Structural domains of transfer RNA molecules. , 1976, Science.

[68]  B. Wimberly A common RNA loop motif as a docking module and its function in the hammerhead ribozyme , 1994, Nature Structural Biology.

[69]  George E. Fox,et al.  Database of non-canonical base pairs found in known RNA structures , 2000, Nucleic Acids Res..

[70]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[71]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.