Adaptive testing for hierarchical student models

This paper presents an approach to student modeling in which knowledge is represented by means of probability distributions associated to a tree of concepts. A diagnosis procedure which uses adaptive testing is part of this approach. Adaptive tests provide well-founded and accurate diagnosis thanks to the underlying probabilistic theory, i.e., the Item Response Theory. Most adaptive testing proposals are based on dichotomous models, where he student answer can only be considered either correct or incorrect. In the work described here, a polytomous model has been used, i.e., answers can be given partial credits. Thus, models are more informative and diagnosis is more efficient. This paper also presents an algorithm for estimating question characteristic curves, which are necessary in order to apply the Item Response Theory to a given domain and hence must be inferred before testing begins. Most prior estimation procedures need huge sets of data. We have modified preexisting procedures in such a way that data requirements are significantly reduced. Finally, this paper presents the results of some controlled evaluations that have been carried out in order to analyze the feasibility and advantages of this approach.

[1]  Paul Libbrecht,et al.  ActiveMath: A Generic and Adaptive Web-Based Learning Environment , 2001 .

[2]  F. Lord Applications of Item Response Theory To Practical Testing Problems , 1980 .

[3]  Eduardo Guzmán,et al.  Simultaneous Evaluation of Multiple Topics in SIETTE , 2002, Intelligent Tutoring Systems.

[4]  Jim E. Greer,et al.  Adaptive Assessment Using Granularity Hierarchies and Bayesian Nets , 1996, Intelligent Tutoring Systems.

[5]  Gerardo Prieto Adánez,et al.  Test informatizados. Fundamentos y aplicaciones . , 2000 .

[6]  Eduardo Guzmán,et al.  Towards Efficient Item Calibration in Adaptive Testing , 2005, User Modeling.

[7]  Susan E. Embretson,et al.  A multidimensional latent trait model for measuring learning and change , 1991 .

[8]  Enrique F. Castillo,et al.  Expert Systems and Probabilistic Network Models , 1996, Monographs in Computer Science.

[9]  Kikumi K. Tatsuoka,et al.  A Probabilistic Model for Diagnosing Misconceptions By The Pattern Classification Approach , 1985 .

[10]  Roger J. Owen ERRATUM FOR A BAYESIAN APPROACH TO TAILORED TESTING (RB–69–92) , 1969 .

[11]  David Maxwell Chickering,et al.  Improving command and control speech recognition on mobile devices: using predictive user models for language modeling , 2006, User Modeling and User-Adapted Interaction.

[12]  S. Embretson,et al.  Item response theory for psychologists , 2000 .

[13]  Mariana Lilley,et al.  The development and evaluation of a software prototype for computer-adaptive testing , 2004, Comput. Educ..

[14]  María Isabel Barbero García Gestión informatizada de bancos de ítems , 1999 .

[15]  José-Luis Pérez-de-la-Cruz,et al.  A Bayesian Diagnostic Algorithm for Student Modeling and its Evaluation , 2002, User Modeling and User-Adapted Interaction.

[16]  M. Scriven,et al.  Perspectives of curriculum evaluation , 1968 .

[17]  Marlene Jones,et al.  The State of Student Modelling , 1994 .

[18]  Pedro Miguel Hontangas Beltrán Los tests adaptativos informatizados en la frontera del siglo XXI: una revisión: una revisión , 2000 .

[19]  B. Junker,et al.  Nonparametric Item Response Theory in Action: An Overview of the Special Issue , 2001 .

[20]  Curtis A. Carver,et al.  Enhancing student learning through hypermedia courseware and incorporation of student learning styles , 1999 .

[21]  Jeffrey Douglas,et al.  Nonparametric Item Response Function Estimation for Assessing Parametric Model Fit , 2001 .

[22]  Wen-Chung Wang,et al.  Implementation and Measurement Efficiency of Multidimensional Computerized Adaptive Testing , 2004 .

[23]  P. Johnson-Laird Mental models , 1989 .

[24]  Eduardo Guzmán,et al.  Self-assessment in a feasible, adaptive web-based testing system , 2005, IEEE Transactions on Education.

[25]  F. Samejima Graded Response Model , 1997 .

[26]  Gordon I. McCalla,et al.  Granularity-Based Reasoning and Belief Revision in Student Models , 1994 .

[27]  Ricardo Conejo,et al.  SIETTE: A Web-Based Tool for Adaptive Testing , 2004, Int. J. Artif. Intell. Educ..

[28]  David Maxwell Chickering,et al.  Personalizing influence diagrams: applying online learning strategies to dialogue management , 2006, User Modeling and User-Adapted Interaction.

[29]  E. Muraki A Generalized Partial Credit Model: Application of an EM Algorithm , 1992 .

[30]  Y. Kanpolat Information age publishing. , 2005, Surgical neurology.

[31]  Wolfgang Härdle,et al.  Applied Nonparametric Regression , 1991 .

[32]  R. Hambleton,et al.  Handbook of Modern Item Response Theory , 1997 .

[33]  Jim Reye A Belief Net Backbone for Student Modelling , 1996, Intelligent Tutoring Systems.

[34]  Cristina Conati,et al.  Probabilistic assessment of user's emotions in educational games , 2002, Appl. Artif. Intell..

[35]  Michael B. Twidale,et al.  Redressing the balance: the advantages of informal evaluation techniques for Intelligent Learning Environments , 1993 .

[36]  Brian Habing,et al.  Nonparametric Regression and the Parametric Bootstrap for Local Dependence Assessment , 2001 .

[37]  W. Härdle,et al.  Applied Nonparametric Regression , 1991 .

[38]  Barbara G. Dodd,et al.  Computerized Adaptive Testing With Polytomous Items , 1995 .

[39]  Roger J. Owen A BAYESIAN APPROACH TO TAILORED TESTING , 1969 .

[40]  Bert Bredeweg,et al.  Student Modelling: The Key to Individualized Knowledge-Based Instruction , 2010, NATO ASI Series.

[41]  Roger C. Schank,et al.  Engines for Education , 1995 .

[42]  John A. Self,et al.  Formal Approaches to Student Modelling John Self 1994 AAI , 1994 .

[43]  Eduardo Guzmán de los Riscos Un modelo de evaluación cognitiva basado en tests adaptativos informatizados para el diagnóstico en sistemas tutores inteligentes , 2005 .

[44]  R. Owen,et al.  A Bayesian Sequential Procedure for Quantal Response in the Context of Adaptive Mental Testing , 1975 .

[45]  R. Darrell Bock,et al.  The Nominal Categories Model , 1997 .

[46]  J. Ramsay Kernel smoothing approaches to nonparametric item characteristic curve estimation , 1991 .

[47]  David J. Weiss,et al.  An Adaptive Testing Strategy for Mastery Decisions. Research Report 79-5. , 1979 .

[48]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[49]  M. Scriven The methodology of evaluation , 1966 .

[50]  Antonija Mitrovic,et al.  Optimising ITS Behaviour with Bayesian Networks and Decision Theory , 2001 .

[51]  Tom Murray,et al.  Formative Qualitative Evaluation for "Exploratory" ITS Research. , 1993 .

[52]  Melvin R. Novick,et al.  Some latent train models and their use in inferring an examinee's ability , 1966 .

[53]  Eduardo Guzmán,et al.  A Model for Student Knowledge Diagnosis Through Adaptive Testing , 2004, Intelligent Tutoring Systems.

[54]  Carmel Domshlak,et al.  Efficient and non-parametric reasoning over user preferences , 2007, User Modeling and User-Adapted Interaction.

[55]  Eric G. Hansen,et al.  DESIGNING ADAPTIVE, DIAGNOSTIC MATH ASSESSMENTS FOR SIGHTED AND VISUALLY DISABLED STUDENTS , 2005 .

[56]  David J. Weiss,et al.  An Adaptive Testing Strategy for Mastery Decisions. , 1979 .

[57]  Cornelis A.W. Glas,et al.  Computerized adaptive testing : theory and practice , 2000 .

[58]  E. Muraki A Generalized Partial Credit Model , 1997 .

[59]  Daniel O. Segall,et al.  Multidimensional adaptive testing , 1996 .

[60]  Eric Horvitz,et al.  Complementary computing: policies for transferring callers from dialog systems to human receptionists , 2006, User Modeling and User-Adapted Interaction.

[61]  George D. Magoulas,et al.  Personalizing the Interaction in a Web-based Educational Hypermedia System: the case of INSPIRE , 2003, User Modeling and User-Adapted Interaction.

[62]  M. R. Novick,et al.  Statistical Theories of Mental Test Scores. , 1971 .

[63]  Michel C. Desmarais,et al.  A Bayesian Student Model without Hidden Nodes and its Comparison with Item Response Theory , 2005, Int. J. Artif. Intell. Educ..

[64]  R. Conejo,et al.  A library of templates for exercise construction in an adaptive assessment system , 2007 .

[65]  Russell G. Almond,et al.  On the Roles of Task Model Variables in Assessment Design. , 1999 .

[66]  Jason A. Collins Adaptive Testing with Granularity , 1996 .

[67]  Kurt VanLehn,et al.  Student Modeling from Conversational Test Data: A Bayesian Approach Without Priors , 1998, Intelligent Tutoring Systems.

[68]  Peter J. Pashley,et al.  Chapter 1 Item Selection and Ability Estimation in Adaptive Testing , 2000 .

[69]  Ingrid Zukerman,et al.  # 2001 Kluwer Academic Publishers. Printed in the Netherlands. Predictive Statistical Models for User Modeling , 1999 .

[70]  David Thissen,et al.  A response model for multiple choice items , 1984 .

[71]  W. Stout Psychometrics: From practice to theory and back , 2002 .

[72]  Peter Brusilovsky,et al.  ELM-ART: An Adaptive Versatile System for Web-based Instruction , 2001 .

[73]  Sherman X. Huang A Content-Balanced Adaptive Testing Algorithm for Computer-Based Training Systems , 1996, Intelligent Tutoring Systems.