Ceramide-enriched membrane domains--structure and function.

[1]  C. Gong,et al.  Deregulation of sphingolipid metabolism in Alzheimer's disease , 2010, Neurobiology of Aging.

[2]  E. Schuchman,et al.  Acid sphingomyelinase overexpression enhances the antineoplastic effects of irradiation in vitro and in vivo. , 2008, Molecular therapy : the journal of the American Society of Gene Therapy.

[3]  M. Weller,et al.  Ceramide accumulation mediates inflammation, cell death and infection susceptibility in cystic fibrosis , 2008, Nature Medicine.

[4]  Yusuf A. Hannun,et al.  Principles of bioactive lipid signalling: lessons from sphingolipids , 2008, Nature Reviews Molecular Cell Biology.

[5]  Olivier Chapet,et al.  Radioresistance of human carcinoma cells is correlated to a defect in raft membrane clustering. , 2007, Free radical biology & medicine.

[6]  T. Trarbach,et al.  Overexpression of acid sphingomyelinase sensitizes glioma cells to chemotherapy. , 2007, Antioxidants & redox signaling.

[7]  A. Hijikata,et al.  A Novel Endoglycoceramidase Hydrolyzes Oligogalactosylceramides to Produce Galactooligosaccharides and Ceramides* , 2007, Journal of Biological Chemistry.

[8]  Sarah Spiegel,et al.  Ceramide kinase regulates growth and survival of A549 human lung adenocarcinoma cells , 2007, FEBS letters.

[9]  H. Hefter,et al.  Liver cell death and anemia in Wilson disease involve acid sphingomyelinase and ceramide , 2007, Nature Medicine.

[10]  E. Gulbins,et al.  TRAIL activates acid sphingomyelinase via a redox mechanism and releases ceramide to trigger apoptosis , 2006, Oncogene.

[11]  D. Marguet,et al.  Fas ligand is localized to membrane rafts, where it displays increased cell death-inducing activity. , 2006, Blood.

[12]  N. Mavaddat,et al.  CD161 (Human NKR-P1A) Signaling in NK Cells Involves the Activation of Acid Sphingomyelinase1 , 2006, The Journal of Immunology.

[13]  F. Goñi,et al.  Detergent-resistant membranes should not be identified with membrane rafts. , 2005, Trends in biochemical sciences.

[14]  E. Gulbins,et al.  Rhinoviruses Infect Human Epithelial Cells via Ceramide-enriched Membrane Platforms* , 2005, Journal of Biological Chemistry.

[15]  Z. Fuks,et al.  Caspase-dependent and -independent Activation of Acid Sphingomyelinase Signaling* , 2005, Journal of Biological Chemistry.

[16]  M. Krönke,et al.  Acid Sphingomyelinase Is Indispensable for UV Light-induced Bax Conformational Change at the Mitochondrial Membrane* , 2005, Journal of Biological Chemistry.

[17]  J. Jaffrezou,et al.  UV-C Light Induces Raft-associated Acid Sphingomyelinase and JNK Activation and Translocation Independently on a Nuclear Signal* , 2005, Journal of Biological Chemistry.

[18]  I. Petrache,et al.  Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice , 2005, Nature Medicine.

[19]  J. Lord,et al.  Reactive oxygen species limit neutrophil life span by activating death receptor signaling. , 2004, Blood.

[20]  K. Kwiatkowska,et al.  Cell Surface Ceramide Generation Precedes and Controls FcγRII Clustering and Phosphorylation in Rafts* , 2004, Journal of Biological Chemistry.

[21]  E. Solary,et al.  Cisplatin-Induced CD95 Redistribution into Membrane Lipid Rafts of HT29 Human Colon Cancer Cells , 2004, Cancer Research.

[22]  Megha,et al.  Ceramide Selectively Displaces Cholesterol from Ordered Lipid Domains (Rafts) , 2004, Journal of Biological Chemistry.

[23]  Arthur S Slutsky,et al.  PAF-mediated pulmonary edema: a new role for acid sphingomyelinase and ceramide , 2004, Nature Medicine.

[24]  S. Munro Lipid Rafts Elusive or Illusive? , 2003, Cell.

[25]  R. Kolesnick,et al.  Raft ceramide in molecular medicine , 2003, Oncogene.

[26]  K. Sandhoff,et al.  Phosphatidylinositol-3,5-Bisphosphate Is a Potent and Selective Inhibitor of Acid Sphingomyelinase , 2003, Biological chemistry.

[27]  S. M. Van Patten,et al.  Activation of Human Acid Sphingomyelinase through Modification or Deletion of C-terminal Cysteine* , 2003, Journal of Biological Chemistry.

[28]  R. Kolesnick,et al.  Ceramide-mediated clustering is required for CD95-DISC formation , 2003, Oncogene.

[29]  E. Schuchman,et al.  The Reverse Activity of Human Acid Ceramidase* , 2003, Journal of Biological Chemistry.

[30]  J. Fanzo,et al.  CD95 Rapidly Clusters in Cells of Diverse Origins , 2003, Cancer biology & therapy.

[31]  R. Kolesnick,et al.  Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts , 2003, Nature Medicine.

[32]  E. Gulbins,et al.  The transmembranous domain of CD40 determines CD40 partitioning into lipid rafts , 2003, FEBS letters.

[33]  P. Kinnunen,et al.  Observation of topical catalysis by sphingomyelinase coupled to microspheres. , 2002, Journal of the American Chemical Society.

[34]  E. Gulbins,et al.  Clustering of CD40 Ligand Is Required to Form a Functional Contact with CD40* , 2002, The Journal of Biological Chemistry.

[35]  Hai-Tao He,et al.  An essential role for membrane rafts in the initiation of Fas/CD95‐triggered cell death in mouse thymocytes , 2002, EMBO reports.

[36]  E. Gulbins,et al.  Ceramide-Rich Membrane Rafts Mediate CD40 Clustering1 , 2002, The Journal of Immunology.

[37]  F. Lang,et al.  Mechanisms of Staphylococcus aureus induced apoptosis of human endothelial cells , 2001, Apoptosis.

[38]  G. Schütz,et al.  Lipopolysaccharide and ceramide docking to CD14 provokes ligand‐specific receptor clustering in rafts , 2001, European journal of immunology.

[39]  C. Vilchèze,et al.  Effect of the Structure of Natural Sterols and Sphingolipids on the Formation of Ordered Sphingolipid/Sterol Domains (Rafts) , 2001, The Journal of Biological Chemistry.

[40]  J. Tschopp,et al.  Ceramide Enables Fas to Cap and Kill* , 2001, The Journal of Biological Chemistry.

[41]  E. Gulbins,et al.  Molecular mechanisms of ceramide-mediated CD95 clustering. , 2001, Biochemical and biophysical research communications.

[42]  R. Kolesnick,et al.  CD95 Signaling via Ceramide-rich Membrane Rafts* , 2001, The Journal of Biological Chemistry.

[43]  A. Kaykas,et al.  CD40 and LMP‐1 both signal from lipid rafts but LMP‐1 assembles a distinct, more efficient signaling complex , 2001, The EMBO journal.

[44]  Weiya Ma,et al.  Involvement of the Acid Sphingomyelinase Pathway in UVA-induced Apoptosis* , 2001, The Journal of Biological Chemistry.

[45]  S. Burakoff,et al.  Targeting Src Homology 2 Domain-Containing Tyrosine Phosphatase (SHP-1) into Lipid Rafts Inhibits CD3-Induced T Cell Activation , 2001, The Journal of Immunology.

[46]  R. Dobrowsky,et al.  Phosphoinositide 3‐kinase regulates crosstalk between Trk A tyrosine kinase and p75NTR‐dependent sphingolipid signaling pathways , 2001, Journal of neurochemistry.

[47]  F. Goñi,et al.  Compartmentalization of ceramide signaling: physical foundations and biological effects , 2000, Journal of cellular physiology.

[48]  E. Gulbins,et al.  Acid sphingomyelinase is involved in CEACAM receptor‐mediated phagocytosis of Neisseria gonorrhoeae , 2000, FEBS letters.

[49]  P. Vidalain,et al.  CD40 signaling in human dendritic cells is initiated within membrane rafts , 2000, The EMBO journal.

[50]  G. Bishop,et al.  Recruitment of CD40 and Tumor Necrosis Factor Receptor-associated Factors 2 and 3 to Membrane Microdomains during CD40 Signaling* , 2000, The Journal of Biological Chemistry.

[51]  Z. Fuks,et al.  CD95(Fas/APO-1) Signals Ceramide Generation Independent of the Effector Stage of Apoptosis* , 2000, The Journal of Biological Chemistry.

[52]  R. Mitchell,et al.  A Role for Lipid Rafts in B Cell Antigen Receptor Signaling and Antigen Targeting , 1999, The Journal of experimental medicine.

[53]  P. W. Janes,et al.  Aggregation of Lipid Rafts Accompanies Signaling via the T Cell Antigen Receptor , 1999, The Journal of cell biology.

[54]  R. Zidovetzki,et al.  Ceramides modulate protein kinase C activity and perturb the structure of Phosphatidylcholine/Phosphatidylserine bilayers. , 1999, Biophysical journal.

[55]  A. Lanzavecchia,et al.  T lymphocyte costimulation mediated by reorganization of membrane microdomains. , 1999, Science.

[56]  G. Natoli,et al.  Apoptotic, non-apoptotic, and anti-apoptotic pathways of tumor necrosis factor signalling. , 1998, Biochemical pharmacology.

[57]  J. Altman,et al.  Initiation of signal transduction through the T cell receptor requires the multivalent engagement of peptide/MHC ligands [corrected]. , 1998, Immunity.

[58]  Colin R. F. Monks,et al.  Three-dimensional segregation of supramolecular activation clusters in T cells , 1998, Nature.

[59]  K. Simons,et al.  Cholesterol Is Required for Surface Transport of Influenza Virus Hemagglutinin , 1998, The Journal of cell biology.

[60]  M. Krönke,et al.  TNF Receptor Death Domain-associated Proteins TRADD and FADD Signal Activation of Acid Sphingomyelinase* , 1998, The Journal of Biological Chemistry.

[61]  K. Williams,et al.  Secretory Sphingomyelinase, a Product of the Acid Sphingomyelinase Gene, Can Hydrolyze Atherogenic Lipoproteins at Neutral pH , 1998, The Journal of Biological Chemistry.

[62]  T. Meyer,et al.  Acidic Sphingomyelinase Mediates Entry of N. gonorrhoeae into Nonphagocytic Cells , 1997, Cell.

[63]  K. Simons,et al.  Caveolae, DIGs, and the dynamics of sphingolipid-cholesterol microdomains. , 1997, Current opinion in cell biology.

[64]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[65]  Seamus J. Martin,et al.  Acid Sphingomyelinase–Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis , 1996, Cell.

[66]  Richard G. W. Anderson,et al.  Localization of Platelet-derived Growth Factor-stimulated Phosphorylation Cascade to Caveolae (*) , 1996, The Journal of Biological Chemistry.

[67]  R. Zidovetzki,et al.  Ceramide induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. , 1996, Biochemical and biophysical research communications.

[68]  B. Baird,et al.  Fc epsilon RI-mediated recruitment of p53/56lyn to detergent-resistant membrane domains accompanies cellular signaling. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[69]  M. Krönke,et al.  TNF activates NF-κB by phosphatidylcholine-specific phospholipase C-induced “Acidic” sphingomyelin breakdown , 1992, Cell.

[70]  D. Bar-Sagi,et al.  Co-capping of ras proteins with surface immunoglobulins in B lymphocytes , 1990, Nature.

[71]  B. Stieger,et al.  Sphingomyelin synthesis in rat liver occurs predominantly at the cis and medial cisternae of the Golgi apparatus. , 1990, The Journal of biological chemistry.

[72]  F. Wieland,et al.  Sphingomyelin is synthesized in the cis Golgi , 1990, FEBS letters.

[73]  T. E. Thompson,et al.  Sphingomyelins in bilayers and biological membranes. , 1980, Biochimica et biophysica acta.

[74]  P. Emmelot,et al.  Phospholipid unsaturation and plasma membrane organization. , 1975, Chemistry and physics of lipids.

[75]  S. Singer,et al.  The Fluid Mosaic Model of the Structure of Cell Membranes , 1972, Science.

[76]  F. Goñi,et al.  Ceramides in phospholipid membranes: effects on bilayer stability and transition to nonlamellar phases. , 1999, Biophysical journal.

[77]  D. Brown,et al.  Functions of lipid rafts in biological membranes. , 1998, Annual review of cell and developmental biology.

[78]  J. Dichgans,et al.  Fas/CD95/Apo-I activates the acidic sphingomyelinase via Caspases , 1998, Cell Death and Differentiation.

[79]  S. Hakomori Chemistry of Glycosphingolipids , 1983 .