Field theory for generalized bidirectional reflectivity: derivation of Helmholtz’s reciprocity principle and Kirchhoff’s law

A generalized bidirectional distribution function (BRDF) that relates the specific intensity of the scattered light from a semi-infinite medium to the specific intensity of the incident light is introduced in the framework of coherence theory. This derivation allows us to obtain from first principles several fundamental properties: First, it is established that the generalized BRDF takes the form of a nonlocal relation between the incident and the scattered specific intensities. This nonlocal structure allows us to account naturally for the lateral shift of a beam. Second, the generalized BRDF is the Fourier transform of the correlation function that describes the memory effect. Third, the Helmholtz principle for specific intensities is derived as a theorem from the reciprocity property of the scattering operator for wave fields. This result allows us to prove Kirchhoff’s law.

[1]  G. Brown,et al.  A stochastic Fourier transform approach to scattering from perfectly conducting randomly rough surfaces , 1982 .

[2]  A. Walther Radiometry and coherence , 1968 .

[3]  E. Wolf,et al.  Generalized Stokes reciprocity relations for scattering from dielectric objects of arbitrary shape , 1986 .

[4]  Jean-Jacques Greffet,et al.  Experimental and theoretical study of reflection and coherent thermal emissionby a SiC grating supporting a surface-phonon polariton , 1997 .

[5]  J. Walkup,et al.  Statistical optics , 1986, IEEE Journal of Quantum Electronics.

[6]  Comments on reciprocity failure. , 1985, Applied optics.

[7]  R. Petit,et al.  Plane-wave expansions used to describe the field diffracted by a grating , 1981 .

[8]  W. H. Carter,et al.  Coherence and radiometry with quasihomogeneous planar sources , 1977 .

[9]  Nieto-Vesperinas,et al.  Enhanced long-range correlations of coherent waves reflected from disordered media. , 1992, Physical review. B, Condensed matter.

[10]  J. Perrin,et al.  Optical surface roughness determination using speckle correlation technique. , 1975, Applied optics.

[11]  Jean-Jacques Greffet,et al.  Reciprocity of evanescent electromagnetic waves , 1998 .

[12]  M. Nieto-Vesperinas Classical radiometry and radiative transfer theory: a short-wavelength limit of a general mapping of cross-spectral densities in second-order coherence theory , 1986 .

[13]  P. Cz. Handbuch der physiologischen Optik , 1896 .

[14]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[15]  J. Perrin,et al.  Real-time measurement of surface roughness by correlation of speckle patterns , 1976 .

[16]  P. Barber Absorption and scattering of light by small particles , 1984 .

[17]  Feng,et al.  Correlations and fluctuations of coherent wave transmission through disordered media. , 1988, Physical review letters.

[18]  Emil Wolf,et al.  New theory of radiative energy transfer in free electromagnetic fields , 1976 .

[19]  E. W. Marchand,et al.  Angular Correlation and the Far-Zone Behavior of Partially Coherent Fields* , 1972 .

[20]  T. Tamir,et al.  Improved analysis of nonspecular phenomena in beams reflected from stratified media , 1990 .

[21]  R. Newton Scattering theory of waves and particles , 1966 .

[22]  B K Garside,et al.  Sensitivity limits of a tunable diode laser spectrometer, with application to the detection of NO(2) at the 100-ppt level. , 1980, Applied optics.

[23]  Zemel,et al.  Polarized spectral emittance from periodic micromachined surfaces. II. Doped silicon: Angular variation. , 1988, Physical review. B, Condensed matter.

[24]  F. Clarke,et al.  Helmholtz Reciprocity: its validity and application to reflectometry , 1985 .

[25]  T. Tamir,et al.  Lateral Displacement of a Light Beam at a Dielectric Interface , 1971 .

[26]  D. Saxon Tensor Scattering Matrix for the Electromagnetic Field , 1955 .

[27]  Akira Ishimaru,et al.  Subsurface detection of a buried object using angular correlation function measurement , 1997 .

[28]  Experimental verification of nonreciprocal response in light scattering from rough surfaces. , 1984, Applied optics.

[29]  J. T. Foley,et al.  Radiometry as a short-wavelength limit of statistical wave theory , 1985, Annual Meeting Optical Society of America.

[30]  Kisik Kim,et al.  Propagation law for Walther’s first generalized radiance function and its short-wavelength limit with quasi-homogeneous sources , 1987 .

[31]  F. E. Nicodemus Reflectance nomenclature and directional reflectance and emissivity. , 1970, Applied optics.

[32]  S. M. Rytov,et al.  Priniciples of statistical radiophysics. 3. Elements of random fields. , 1989 .

[33]  Michael E. Knotts,et al.  Angular correlation functions of polarized intensities scattered from a one-dimensionally rough surface , 1992 .

[34]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[35]  Feng,et al.  Memory effects in propagation of optical waves through disordered media. , 1988, Physical review letters.

[36]  Manuel Nieto-Vesperinas,et al.  Intensity angular correlations of light multiply scattered from random rough surfaces , 1993 .

[37]  Jean-Jacques Greffet,et al.  Nonspecular astigmatic reflection of a 3D gaussian beam on an interface , 1992 .

[38]  W. Nasalski Modified reflectance and geometrical deformations of Gaussian beams reflected at a dielectric interface , 1989 .

[39]  K. A. O’Donnell,et al.  Angular correlation functions of amplitudes scattered from a one-dimensional, perfectly conducting rough surface , 1992 .

[40]  D. Bertilone Radiometric coherence tensors for thermal radiation emission from an opaque specular surface , 1997 .

[41]  Arvind S. Marathay,et al.  Elements of optical coherence theory , 1982 .

[42]  Li,et al.  Correlation in laser speckle. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[43]  Radiometric model for propagation of coherence. , 1994, Optics letters.

[44]  J. Greffet,et al.  Nonspecular reflection from a lossy dielectric. , 1993, Optics letters.

[45]  Zemel,et al.  Polarized spectral emittance from periodic micromachined surfaces. I. Doped silicon: The normal direction. , 1988, Physical review. B, Condensed matter.

[46]  M J Kim Verification of the reciprocity theorem. , 1988, Applied optics.

[47]  Displacement of a totally reflected light beam: filtering of he polarization states and amplification , 1975 .

[48]  H. M. Pedersen Second-order Statistics of Light Diffracted from Gaussian, Rough Surfaces with Applications to the Roughness Dependence of Speckles , 1975 .

[49]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[50]  Bretenaker,et al.  Direct measurement of the optical Goos-Hänchen effect in lasers. , 1992, Physical review letters.

[51]  E. Wolf Coherence and radiometry , 1978 .

[52]  E. W. Marchand,et al.  Radiometry with sources of any state of coherence , 1974 .

[53]  Feng,et al.  Memory effect of waves in disordered systems: A real-space approach. , 1989, Physical review. B, Condensed matter.

[54]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[55]  Jay N. Zemel,et al.  Organ pipe radiant modes of periodic micromachined silicon surfaces , 1986, Nature.

[56]  F. E. Nicodemus Directional Reflectance and Emissivity of an Opaque Surface , 1965 .

[57]  H. Eom Energy conservation and reciprocity of random rough surface scattering. , 1985, Applied optics.