Border-collision bifurcations on a two-dimensional torus

Abstract This paper studies resonance phenomena in a piecewise-smooth dynamical system with external periodic action and examines transitions to chaos via border-collision bifurcations of cycles on a two-dimensional torus. As an example we consider a control system with pulse-width modulation described by a three-dimensional set of piecewise-linear non-autonomous equations. It is shown that the domains of synchronization of quasiperiodic oscillations for piecewise-smooth dynamical systems differ in an essential way from the classical Arnol'd tongues. The difference lies in the inner structure and bifurcational transitions. There are two different kinds of synchronization domains, one of which contains regions of bistability. The structure of border-collision bifurcation boundaries of synchronization tongues and transitions to chaos via border-collision bifurcations of cycles on a two-dimensional torus are described in detail.

[1]  Arne Nordmark,et al.  Effects due to Low Velocity Impact in Mechanical Oscillators , 1992 .

[2]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[3]  P. Holmes,et al.  A periodically forced piecewise linear oscillator , 1983 .

[4]  Valter Franceschini,et al.  Bifurcations of tori and phase locking in a dissipative system of differential equations , 1983 .

[5]  F. Ayrom,et al.  Chaos in Chua's circuit , 1986 .

[6]  James A. Yorke,et al.  BORDER-COLLISION BIFURCATIONS FOR PIECEWISE SMOOTH ONE-DIMENSIONAL MAPS , 1995 .

[7]  Erik Mosekilde,et al.  Quasi-periodicity and border-collision bifurcations in a DC-DC converter with pulsewidth modulation , 2003 .

[8]  J. M. T. Thompson,et al.  Chaotic dynamics of an impact oscillator , 1983 .

[9]  Arkadiĭ Khaĭmovich Gelig,et al.  Stability and Oscillations of Nonlinear Pulse-Modulated Systems , 1998 .

[10]  James A. Yorke,et al.  Border-collision bifurcations including “period two to period three” for piecewise smooth systems , 1992 .

[11]  E. Mosekilde,et al.  Phase-locking regions in a forced model of slow insulin and glucose oscillations. , 1995, Chaos.

[12]  Yury V. Kolokolov,et al.  Bifurcations and Chaotic oscillations in an Automatic Control Relay System with Hysteresis , 2001, Int. J. Bifurc. Chaos.

[13]  Arne Nordmark,et al.  Non-periodic motion caused by grazing incidence in an impact oscillator , 1991 .

[14]  J. Sturis,et al.  Entrainment of pulsatile insulin secretion by oscillatory glucose infusion. , 1991, The Journal of clinical investigation.

[15]  J. Maurer,et al.  Rayleigh-Bénard experiment in liquid helium ; frequency locking and the onset of turbulence , 1979 .

[16]  S. Foale Analytical determination of bifurcations in an impact oscillator , 1994, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[17]  G. S. Whiston,et al.  Global dynamics of a vibro-impacting linear oscillator , 1987 .

[18]  G. S. Whiston,et al.  Singularities in vibro-impact dynamics , 1992 .

[19]  Guanrong Chen Controlling Chaos and Bifurcations in Engineering Systems , 1999 .

[20]  Leon O. Chua,et al.  BIFURCATIONS OF ATTRACTING CYCLES FROM TIME-DELAYED CHUA’S CIRCUIT , 1995 .

[21]  C. Sung,et al.  Dynamics of a harmonically excited impact damper: Bifurcations and chaotic motion , 1992 .

[22]  M. I. Feigin,et al.  On the structure of C-bifurcation boundaries of piecewise-continuous systems , 1978 .

[23]  M. I. Feigin,et al.  Doubling of the oscillation period with C-bifurcations in piecewise-continuous systems: PMM vol. 34, n≗5, 1970, pp. 861–869 , 1970 .

[24]  J. Kurths,et al.  Heartbeat synchronized with ventilation , 1998, Nature.

[25]  C J Budd,et al.  Grazing and border-collision in piecewise-smooth systems: a unified analytical framework. , 2001, Physical review letters.

[26]  F. Peterka,et al.  Transition to chaotic motion in mechanical systems with impacts , 1992 .

[27]  E. Mosekilde,et al.  Mode-locking and chaos in a model of two coupled thermostatically controlled radiators , 1995 .

[28]  H. Samueli,et al.  Nonperiodic forced overflow oscillations in digital filters , 1983 .

[29]  I︠a︡. Z. T︠S︡ypkin Relay Control Systems , 1985 .

[30]  L. Chua,et al.  GLOBAL BIFURCATION ANALYSIS OF THE DOUBLE SCROLL CIRCUIT , 1991 .

[31]  Stephen John Hogan,et al.  Local Analysis of C-bifurcations in n-dimensional piecewise smooth dynamical systems , 1999 .

[32]  Ott,et al.  Border-collision bifurcations: An explanation for observed bifurcation phenomena. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  M. I. Feigin,et al.  On the generation of sets of subharmonic modes in a piecewbe-continuous system: PMM vol.38, n≗5, 1974, pp. 810–818 , 1974 .

[34]  Werner Schiehlen,et al.  Local and global stability of a piecewise linear oscillator , 1992, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[35]  Stavans Experimental study of quasiperiodicity in a hydrodynamical system. , 1987, Physical review. A, General physics.

[36]  Erik Mosekilde,et al.  Border-Collision bifurcations and Chaotic oscillations in a piecewise-Smooth Dynamical System , 2001, Int. J. Bifurc. Chaos.

[37]  Leon O. Chua,et al.  Simplest chaotic nonautonomous circuit , 1984 .

[38]  Enric Fossas,et al.  Study of chaos in the buck converter , 1996 .

[39]  I. Kevrekidis,et al.  Some common dynamic features of coupled reacting systems , 1991 .

[40]  T. Saito Reality of chaos in four-dimensional hysteretic circuits , 1991 .

[41]  D. Aronson,et al.  Bifurcations from an invariant circle for two-parameter families of maps of the plane: A computer-assisted study , 1982 .

[42]  Luigi Glielmo,et al.  Switchings, bifurcations, and chaos in DC/DC converters , 1998 .