Banach SSD spaces and classes of monotone sets

In this paper, we unify the theory of SSD spaces and the theory of strongly representable sets, and we apply our results to the theory of the various classes of maximally monotone sets. In particular, we prove that type (ED), dense type, type (D), type (NI) and strongly representable are equivalent concepts and, consequently, that the known properties of strongly representable sets follow from known properties of sets of type (ED).

[1]  B. Svaiter,et al.  Brøndsted-Rockafellar Property and Maximality of Monotone Operators Representable by Convex Functions in Non-Reflexive Banach Spaces , 2008 .

[2]  The Hahn–Banach–Lagrange theorem , 2007 .

[3]  Jean-Pierre Gossez,et al.  Opérateurs monotones non linéaires dans les espaces de Banach non réflexifs , 1971 .

[4]  B. Svaiter,et al.  A New Old Class of Maximal Monotone Operators , 2008, 0805.4597.

[5]  Stephen Simons,et al.  Maximal Monotone Multifunctions of Brøndsted–Rockafellar Type , 1999 .

[6]  S. Simons,et al.  Positive sets and monotone sets , 2005 .

[7]  Max L. Warshauer,et al.  Lecture Notes in Mathematics , 2001 .

[8]  S. Fitzpatrick Representing monotone operators by convex functions , 1988 .

[9]  Regina Sandra Burachik,et al.  MAXIMAL MONOTONICITY, CONJUGATION AND THE DUALITY PRODUCT , 2003, 0802.1654.

[10]  Stephen Simons,et al.  The range of a monotone operator , 1996 .

[11]  R. Phelps Lectures on maximal monotone operators , 1993, math/9302209.

[12]  C. Zălinescu Convex analysis in general vector spaces , 2002 .

[13]  R. Rockafellar Extension of Fenchel’ duality theorem for convex functions , 1966 .

[14]  M. D. Voisei,et al.  Strongly-Representable Operators , 2008 .

[15]  S. Simons From Hahn-Banach to monotonicity , 2008 .

[16]  Michel Théra,et al.  A CONVEX REPRESENTATION OF MAXIMAL MONOTONE OPERATORS , 2001 .

[17]  Jean-Pierre Gossez,et al.  On a convexity property of the range of a maximal monotone operator , 1976 .

[18]  Jean-Paul Penot,et al.  The relevance of convex analysis for the study of monotonicity , 2004 .

[19]  M. Marques Alves,et al.  On Gossez Type (D) Maximal Monotone Operators , 2009, 0903.5332.

[20]  Juan Enrique Martínez-Legaz,et al.  A CONVEX REPRESENTATION OF MAXIMAL MONOTONE OPERATORS , 2003 .

[21]  D. Zagrodny The Convexity of the Closure of the Domain and the Range of a Maximal Monotone Multifunction of Type NI , 2008 .