DISCONTINUOUS GALERKIN DISCRETIZATION OF THE HEAT EQUATION IN ANY DIMENSION : THE SPECTRAL SYMBOL
暂无分享,去创建一个
Rolf Krause | Carlo Garoni | Stefano Serra-Capizzano | Pietro Benedusi | Xiaozhou Li | S. Serra-Capizzano | R. Krause | Xiaozhou Li | P. Benedusi | Carlo Garoni | C. Garoni
[1] Leonid Golinskii,et al. The asymptotic properties of the spectrum of nonsymmetrically perturbed Jacobi matrix sequences , 2007, J. Approx. Theory.
[2] Carlo Garoni,et al. Spectral Analysis and Spectral Symbol of d-variate $\mathbb Q_{\boldsymbol p}$ Lagrangian FEM Stiffness Matrices , 2015, SIAM J. Matrix Anal. Appl..
[3] A. Quarteroni. Numerical Models for Differential Problems , 2009 .
[4] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .
[5] Vít Dolejší,et al. Discontinuous Galerkin Method: Analysis and Applications to Compressible Flow , 2015 .
[6] Hendrik Speleers,et al. On the spectrum of stiffness matrices arising from isogeometric analysis , 2014, Numerische Mathematik.
[7] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[8] Béatrice Rivière,et al. Discontinuous Galerkin methods for solving elliptic and parabolic equations - theory and implementation , 2008, Frontiers in applied mathematics.
[9] Carlo Garoni. Spectral distribution of PDE discretization matrices from isogeometric analysis: the case of $L^1$ coefficients and non-regular geometry , 2018 .
[10] Carlo Garoni,et al. Generalized locally Toeplitz sequences : Theory and applications , 2017 .
[11] Hendrik Speleers,et al. Robust and optimal multi-iterative techniques for IgA Galerkin linear systems This is a preprint of a paper published in Comput. Methods Appl. Mech. Engrg. 284 (2015) 230264. , 2015 .
[12] S. Serra Capizzano,et al. Generalized locally Toeplitz sequences: spectral analysis and applications to discretized partial differential equations , 2003 .
[13] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric Galerkin methods , 2017, Math. Comput..
[14] Claes Johnson,et al. Introduction to Adaptive Methods for Differential Equations , 1995, Acta Numerica.
[15] Hendrik Speleers,et al. Spectral analysis and spectral symbol of matrices in isogeometric collocation methods , 2015, Math. Comput..
[16] Carlo Garoni,et al. Tools for Determining the Asymptotic Spectral Distribution of non-Hermitian Perturbations of Hermitian Matrix-Sequences and Applications , 2015 .
[17] Stefano Serra-Capizzano. More Inequalities and Asymptotics for Matrix Valued Linear Positive Operators: the Noncommutative Case , 2002 .
[18] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[19] Stefano Serra-Capizzano,et al. The GLT class as a generalized Fourier analysis and applications , 2006 .
[20] Stefano Serra Capizzano,et al. Spectral analysis and spectral symbol for the 2D curl-curl (stabilized) operator with applications to the related iterative solutions , 2016, Math. Comput..
[21] Shinichi Kawahara. Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .
[22] Hendrik Speleers,et al. Symbol-Based Multigrid Methods for Galerkin B-Spline Isogeometric Analysis , 2017, SIAM J. Numer. Anal..
[23] Paolo Tilli,et al. A note on the spectral distribution of toeplitz matrices , 1998 .
[24] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[25] J. Hesthaven,et al. Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .
[26] Arno B. J. Kuijlaars,et al. Superlinear Convergence of Conjugate Gradients , 2001, SIAM J. Numer. Anal..
[27] P. Raviart,et al. On a Finite Element Method for Solving the Neutron Transport Equation , 1974 .
[28] Hendrik Speleers,et al. Lusin theorem, GLT sequences and matrix computations: An application to the spectral analysis of PDE discretization matrices , 2017 .
[29] Gene H. Golub,et al. Matrix computations , 1983 .