A Blended Soundproof-to-Compressible Numerical Model for Small- to Mesoscale Atmospheric Dynamics

A blended model for atmospheric flow simulations is introduced that enables seamless transition from semi-implicit fully compressible to pseudo-incompressible dynamics. The model equations are written in non-perturbational form and integrated using a wellbalanced second-order finite volume discretization. The scheme combines an explicit predictor for advection with elliptic corrections for the pressure field. Compressibility is implemented through a diagonal term in the elliptic equation. The compressible/soundproof transition is realized by weighting this term appropriately and it provides a mechanism for removing unwanted acoustic imbalances in compressible runs, with potential ramifications for data assimilation. As the thermodynamic pressure gradient is used in the momentum equation, the influence of perturbation pressure on buoyancy is included for thermodynamic consistency. This model is equivalent to Durran's original pseudo- incompressible model, which uses the Exner pressure. Numerical experiments demonstrate quadratic convergence and competitive solution quality for several benchmarks. With the thermodynamically consistent buoyancy correction the "p-\rho-formulation" of the sound-proof model closely reproduces the compressible results. The proposed approach offers a framework for model comparison largely free of biases due to different discretizations. With data assimilation applications in mind, the seamless compressible-sound-proof transition mechanism is also shown to enable the removal of acoustic imbalances in initial data for which balanced pressure distributions are unknown.

[1]  Francis X. Giraldo,et al.  A Conservative Discontinuous Galerkin Semi-Implicit Formulation for the Navier-Stokes Equations in Nonhydrostatic Mesoscale Modeling , 2009, SIAM J. Sci. Comput..

[2]  R. Stull,et al.  A Compressible Nonhydrostatic Cell-Integrated Semi-Lagrangian Semi-Implicit Solver (CSLAM-NH) with Consistent and Conservative Transport , 2014 .

[3]  Phillip Colella,et al.  An efficient second-order projection method for viscous incompressible flow , 1991 .

[4]  Michael L. Minion,et al.  A fourth-order auxiliary variable projection method for zero-Mach number gas dynamics , 2008, J. Comput. Phys..

[5]  Andreas Dedner,et al.  Comparison of dynamical cores for NWP models , 2012 .

[6]  Louis J. Wicker,et al.  Numerical solutions of a non‐linear density current: A benchmark solution and comparisons , 1993 .

[7]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[8]  A. Arakawa,et al.  Unification of the Anelastic and Quasi-Hydrostatic Systems of Equations , 2009 .

[9]  Omar M. Knio,et al.  Regime of Validity of Soundproof Atmospheric Flow Models , 2010 .

[10]  R. Klein,et al.  Gravity waves, scale asymptotics and the pseudo-incompressible equations , 2010, Journal of Fluid Mechanics.

[11]  Terry Davies,et al.  Validity of anelastic and other equation sets as inferred from normal‐mode analysis , 2003 .

[12]  Joanna Szmelter,et al.  An edge-based unstructured mesh framework for atmospheric flows , 2011 .

[13]  Dale R. Durran,et al.  Implicit–Explicit Multistep Methods for Fast-Wave–Slow-Wave Problems , 2012 .

[14]  Luca Bonaventura,et al.  A Semi-implicit Semi-Lagrangian Scheme Using the Height Coordinate for a Nonhydrostatic and Fully Elastic Model of Atmospheric Flows , 2000 .

[15]  Slobodan Nickovic,et al.  An Alternative Approach to Nonhydrostatic Modeling , 2001 .

[16]  A. Staniforth,et al.  A new dynamical core for the Met Office's global and regional modelling of the atmosphere , 2005 .

[17]  Rupert Klein,et al.  Thermodynamic Consistency of a Pseudoincompressible Approximation for General Equations of State , 2012 .

[18]  Cathy Hohenegger,et al.  Predictability and Error Growth Dynamics in Cloud-Resolving Models , 2007 .

[19]  M. Diamantakis,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretization of the deep‐atmosphere global non‐hydrostatic equations , 2014 .

[20]  A. S. Almgren,et al.  Low mach number modeling of type Ia supernovae. I. Hydrodynamics , 2005 .

[21]  Hester Bijl,et al.  A Unified Method for Computing Incompressible and Compressible Flows in Boundary-Fitted Coordinates , 1998 .

[22]  Rupert Klein,et al.  Regular Article: Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 1999 .

[23]  Stefan Vater,et al.  Stability of a Cartesian grid projection method for zero Froude number shallow water flows , 2009, Numerische Mathematik.

[24]  Scott R. Kohn,et al.  Managing complex data and geometry in parallel structured AMR applications , 2006, Engineering with Computers.

[25]  P. Smolarkiewicz,et al.  Conservative integrals of adiabatic Durran's equations , 2008 .

[26]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[27]  P. R. Bannon,et al.  A Comparison of Compressible and Anelastic Models of Deep Dry Convection , 2008 .

[28]  Hilary Weller,et al.  Curl-Free Pressure Gradients over Orography in a Solution of the Fully Compressible Euler Equations with Implicit Treatment of Acoustic and Gravity Waves , 2014 .

[29]  R. Hemler,et al.  A Scale Analysis of Deep Moist Convection and Some Related Numerical Calculations , 1982 .

[30]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[31]  R. Klein,et al.  Extension of Finite Volume Compressible Flow Solvers to Multi-dimensional, Variable Density Zero Mach Number Flows , 2000 .

[32]  Chi-Wang Shu,et al.  Strong Stability-Preserving High-Order Time Discretization Methods , 2001, SIAM Rev..

[33]  Mariano Hortal,et al.  The development and testing of a new two‐time‐level semi‐Lagrangian scheme (SETTLS) in the ECMWF forecast model , 2002 .

[34]  Geoffrey M. Vasil,et al.  ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. II. LAGRANGIAN CONSTRAINED ANALYSIS , 2013, 1303.0005.

[35]  A. Caceres,et al.  Mapping Initial Hydrostatic Models in Godunov Codes , 2002 .

[36]  Andrzej A. Wyszogrodzki,et al.  An implicitly balanced hurricane model with physics-based preconditioning , 2005 .

[37]  Rüdiger Weiner,et al.  Partially implicit peer methods for the compressible Euler equations , 2011, J. Comput. Phys..

[38]  G. Zängl,et al.  The ICON (ICOsahedral Non‐hydrostatic) modelling framework of DWD and MPI‐M: Description of the non‐hydrostatic dynamical core , 2015 .

[39]  D. Durran A physically motivated approach for filtering acoustic waves from the equations governing compressible stratified flow , 2008, Journal of Fluid Mechanics.

[40]  Rupert Klein,et al.  Scale-Dependent Models for Atmospheric Flows , 2010 .

[41]  Francis X. Giraldo,et al.  Continuous and discontinuous Galerkin methods for a scalable three-dimensional nonhydrostatic atmospheric model: Limited-area mode , 2012, J. Comput. Phys..

[42]  Robert D. Falgout,et al.  The Design and Implementation of hypre, a Library of Parallel High Performance Preconditioners , 2006 .

[43]  Ronald Fedkiw,et al.  A method for avoiding the acoustic time step restriction in compressible flow , 2009, J. Comput. Phys..

[44]  William C. Skamarock,et al.  A time-split nonhydrostatic atmospheric model for weather research and forecasting applications , 2008, J. Comput. Phys..

[45]  Christian Kühnlein,et al.  A consistent framework for discrete integrations of soundproof and compressible PDEs of atmospheric dynamics , 2014, J. Comput. Phys..

[46]  Nigel Wood,et al.  An inherently mass‐conserving semi‐implicit semi‐Lagrangian discretisation of the shallow‐water equations on the sphere , 2009 .

[47]  Florence Rabier,et al.  Overview of global data assimilation developments in numerical weather‐prediction centres , 2005 .

[48]  J. Prusa,et al.  EULAG, a computational model for multiscale flows , 2008 .

[49]  William C. Skamarock,et al.  Efficiency and Accuracy of the Klemp-Wilhelmson Time-Splitting Technique , 1994 .

[50]  C. Konor Design of a Dynamical Core Based on the Nonhydrostatic “Unified System” of Equations* , 2014 .

[51]  Donald Greenspan,et al.  Pressure method for the numerical solution of transient, compressible fluid flows , 1984 .

[52]  Emil M. Constantinescu,et al.  Implicit-Explicit Formulations of a Three-Dimensional Nonhydrostatic Unified Model of the Atmosphere (NUMA) , 2013, SIAM J. Sci. Comput..

[53]  Francis X. Giraldo,et al.  Continuous and Discontinuous Galerkin Methods for a Scalable 3D Nonhydrostatic Atmospheric Model: limited-area mode , 2012 .

[54]  D. Durran Improving the Anelastic Approximation , 1989 .

[55]  R. Klein Asymptotics, structure, and integration of sound-proof atmospheric flow equations , 2009 .

[56]  M. J. P. Cullen,et al.  Modelling atmospheric flows , 2007, Acta Numerica.

[57]  Andreas Dedner,et al.  Comparison of dynamical cores for NWP models: comparison of COSMO and Dune , 2013 .

[58]  P. R. Bannon On the anelastic approximation for a compressible atmosphere , 1996 .

[59]  Rupert Klein,et al.  Well balanced finite volume methods for nearly hydrostatic flows , 2004 .

[60]  Rupert Klein,et al.  Asymptotic Analyses for Atmospheric Flows and the Construction of Asymptotically Adaptive Numerical Methods , 2000 .

[61]  T. Sonar,et al.  Asymptotic adaptive methods for multi-scale problems in fluid mechanics , 2001 .

[62]  Phillip Colella,et al.  An anelastic allspeed projection method for gravitationally stratified flows , 2006, J. Comput. Phys..

[63]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[64]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[65]  Joseph M. Prusa,et al.  Multi-scale waves in sound-proof global simulations with EULAG , 2011 .

[66]  J. Dukowicz Evaluation of Various Approximations in Atmosphere and Ocean Modeling Based on an Exact Treatment of Gravity Wave Dispersion , 2013 .

[67]  R. Klein,et al.  Using the sound-proof limit for balanced data initialization , 2014 .

[68]  Rüdiger Weiner,et al.  Explicit Two-Step Peer Methods for the Compressible Euler Equations , 2009 .

[69]  S. Vater A multigrid-based multiscale numerical scheme for shallow water flows at low froude number , 2013 .

[70]  A. S. Almgren,et al.  MAESTRO: AN ADAPTIVE LOW MACH NUMBER HYDRODYNAMICS ALGORITHM FOR STELLAR FLOWS , 2010, 1005.0112.

[71]  C. Munz,et al.  The extension of incompressible flow solvers to the weakly compressible regime , 2003 .

[72]  Michael Zingale,et al.  Low Mach Number Modeling of Type Ia Supernovae , 2005 .