Human mesenchymal stem cell viability, proliferation and differentiation potential in response to ceramic chemistry and surface roughness

[1]  Luis Meseguer-Olmo,et al.  αTCP ceramic doped with dicalcium silicate for bone regeneration applications prepared by powder metallurgy method: in vitro and in vivo studies. , 2013, Journal of biomedical materials research. Part A.

[2]  Marcus Abboud,et al.  Physical properties, mechanical behavior, and electron microscopy study of a new α-TCP block graft with silicon in an animal model. , 2012, Journal of biomedical materials research. Part A.

[3]  L. Meseguer-Olmo,et al.  “In vitro” behaviour of adult mesenchymal stem cells of human bone marrow origin seeded on a novel bioactive ceramics in the Ca2SiO4–Ca3(PO4)2 system , 2012, Journal of Materials Science: Materials in Medicine.

[4]  I. M. Martínez,et al.  New block graft of α-TCP with silicon in critical size defects in rabbits: Chemical characterization, histological, histomorphometric and micro-CT study , 2012 .

[5]  P. Velásquez,et al.  The Sub‐System α‐TCPss‐Silicocarnotite Within the Binary System Ca3(PO4)2–Ca2SiO4 , 2011 .

[6]  L. Meseguer-Olmo,et al.  Production and study of in vitro behaviour of monolithic α-tricalcium phosphate based ceramics in the system Ca3(PO4)2–Ca2SiO4 , 2011 .

[7]  M. Shie,et al.  The role of silicon in osteoblast-like cell proliferation and apoptosis. , 2011, Acta biomaterialia.

[8]  P. Velásquez,et al.  Synthesis and stability of α-tricalcium phosphate doped with dicalcium silicate in the system Ca3(PO4)2–Ca2SiO4 , 2010 .

[9]  M. Bohner,et al.  Silicon-substituted calcium phosphates - a critical view. , 2009, Biomaterials.

[10]  Fanhao Meng,et al.  Influences of ionic dissolution products of dicalcium silicate coating on osteoblastic proliferation, differentiation and gene expression. , 2009, Acta biomaterialia.

[11]  M. Vallet‐Regí,et al.  Calcium phosphate-based particles influence osteogenic maturation of human mesenchymal stem cells. , 2009, Acta biomaterialia.

[12]  P. Pena,et al.  Biological Response to Wollastonite Doped α-Tricalcium Phosphate Implants in Hard and Soft Tissues in Rats , 2008 .

[13]  M. Vallet‐Regí,et al.  In vitro behaviour of adult mesenchymal stem cells seeded on a bioactive glass ceramic in the SiO(2)-CaO-P(2)O(5) system. , 2008, Acta biomaterialia.

[14]  P. Pena,et al.  Preparation and In Vitro Characterization of Wollastonite Doped Tricalcium Phosphate Bioceramics , 2007 .

[15]  B. Nebe,et al.  Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells , 2007, Journal of cellular and molecular medicine.

[16]  E. Demchuk,et al.  Impact of Silanol Surface Density on the Toxicity of Silica Aerosols Measured by Erythrocyte Haemolysis , 2006, Journal of occupational and environmental hygiene.

[17]  P. N. Aza,et al.  Influence of Sterilization Techniques on the In Vitro Bioactivity of Pseudowollastonite , 2006 .

[18]  M. Sayer,et al.  Synthesis and characterization of single-phase silicon-substituted α-tricalcium phosphate , 2006 .

[19]  Maxence Bigerelle,et al.  Topography effects of pure titanium substrates on human osteoblast long-term adhesion. , 2005, Acta biomaterialia.

[20]  G. Vunjak‐Novakovic,et al.  Osteogenic differentiation of human bone marrow stromal cells on partially demineralized bone scaffolds in vitro. , 2004, Tissue engineering.

[21]  J N Skepper,et al.  Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. , 2003, Biomaterials.

[22]  M. Sayer,et al.  Structure and composition of silicon-stabilized tricalcium phosphate. , 2003, Biomaterials.

[23]  J. Fernández‐Pradas,et al.  Pulsed laser deposition of pseudowollastonite coatings. , 2002, Biomaterials.

[24]  B. Fubini,et al.  Cytotoxic and transforming effects of silica particles with different surface properties in Syrian hamster embryo (SHE) cells. , 2000, Toxicology in vitro : an international journal published in association with BIBRA.

[25]  J. Polak,et al.  Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. , 2000, Biochemical and biophysical research communications.

[26]  R. Deans,et al.  Mesenchymal stem cells: biology and potential clinical uses. , 2000, Experimental hematology.

[27]  T. Webster,et al.  Osteoblast adhesion on nanophase ceramics. , 1999, Biomaterials.

[28]  P. Ducheyne,et al.  Effect of serum proteins on osteoblast adhesion to surface‐modified bioactive glass and hydroxyapatite , 1999, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[29]  H. Zeng,et al.  Analysis of bovine serum albumin adsorption on calcium phosphate and titanium surfaces. , 1999, Biomaterials.

[30]  K. Ohya,et al.  Behavior of bone marrow cells cultured on three different coatings of gel-derived bioactive glass-ceramics at early stages of cell differentiation. , 1998, Journal of biomedical materials research.

[31]  C. Damsky,et al.  Fibronectin is a survival factor for differentiated osteoblasts. , 1998, Journal of cell science.

[32]  T. Kawai,et al.  Effect of microstructure of titanium surface on the behaviour of osteogenic cell line MC3T3-E1 , 1998, Journal of materials science. Materials in medicine.

[33]  J. Ong,et al.  Osteoblast precursor cell activity on HA surfaces of different treatments. , 1998, Journal of biomedical materials research.

[34]  P. Marie,et al.  Proliferation and differentiation of human trabecular osteoblastic cells on hydroxyapatite. , 1997, Journal of biomedical materials research.

[35]  H. Ohgushi,et al.  Osteoblastic phenotype expression on the surface of hydroxyapatite ceramics. , 1997, Journal of biomedical materials research.

[36]  P Ducheyne,et al.  Quantification of cell adhesion using a spinning disc device and application to surface-reactive materials. , 1997, Biomaterials.

[37]  H. Ohgushi,et al.  Osteogenic differentiation of cultured marrow stromal stem cells on the surface of bioactive glass ceramics. , 1996, Journal of biomedical materials research.

[38]  B D Boyan,et al.  Surface roughness modulates the local production of growth factors and cytokines by osteoblast-like MG-63 cells. , 1996, Journal of biomedical materials research.

[39]  B D Boyan,et al.  Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63). , 1995, Journal of biomedical materials research.

[40]  C. V. van Blitterswijk,et al.  Structural arrangements at the interface between plasma sprayed calcium phosphates and bone. , 1994, Biomaterials.

[41]  J C Keller,et al.  Optimization of surface micromorphology for enhanced osteoblast responses in vitro. , 1993, The International journal of oral & maxillofacial implants.

[42]  P Ducheyne,et al.  Bioactive ceramic prosthetic coatings. , 1992, Clinical orthopaedics and related research.

[43]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[44]  D. Puleo,et al.  Osteoblast responses to orthopedic implant materials in vitro. , 1991, Journal of biomedical materials research.

[45]  S. Radin,et al.  Effect of calcium phosphate coating characteristics on early post-operative bone tissue ingrowth. , 1990, Biomaterials.

[46]  D. Scudiero,et al.  Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. , 1988, Cancer research.

[47]  Serena M. Best,et al.  Bioceramics: Past, present and for the future , 2008 .

[48]  J. D. Ballard Investigation of cell adhesion to silica nanoparticle-decorated surfaces and the associated protein-mediated mechanisms , 2005 .

[49]  C. Wilkinson,et al.  Reactions of cells to topography. , 1998, Journal of biomaterials science. Polymer edition.

[50]  G. G. Niederauer,et al.  In vitro attachment of osteoblast-like cells to osteoceramic materials. , 1997, Dental materials : official publication of the Academy of Dental Materials.

[51]  M. Dunn,et al.  In vitro evaluation of amorphous calcium phosphate and poorly crystallized hydroxyapatite coatings on titanium implants. , 1993, Journal of biomedical materials research.