On the Monotonicity of Interval Type-2 Fuzzy Logic Systems

Qualitative knowledge is very useful for system modeling and control problems, especially when specific physical structure knowledge is unavailable and the number of training data points is small. This paper studies the incorporation of one common qualitative knowledge-monotonicity into interval type-2 (IT2) fuzzy logic systems (FLSs). Sufficient conditions on the antecedent and consequent parts of fuzzy rules are derived to guarantee the monotonicity between inputs and outputs. We take into account five type-reduction and defuzzification methods (the Karnik-Mendel method, the Du-Ying method, the Begian-Melek-Mendel method, the Wu-Tan method, and the Nie-Tan method). We show that IT2 FLSs are monotonic if the antecedent and consequents parts of their fuzzy rules are arranged according to the proposed monotonicity conditions. The derived monotonicity conditions are valid for the IT2 FLSs using any kind of IT2 fuzzy sets (FSs) (e.g., Trapezoidal IT2 FSs and Gaussian IT2 FSs) and stand for type-1 FLSs as well. Guidelines for applying the proposed conditions to modeling and control problems are also given. Our results will be useful in the design of monotonic IT2 FLSs for engineering applications when the monotonicity property is desired.

[1]  Jamshid Dehmeshki,et al.  An Automatic Approach for Learning and Tuning Gaussian Interval Type-2 Fuzzy Membership Functions Applied to Lung CAD Classification System , 2012, IEEE Transactions on Fuzzy Systems.

[2]  Humberto Bustince,et al.  Indicator of inclusion grade for interval-valued fuzzy sets. Application to approximate reasoning based on interval-valued fuzzy sets , 2000, Int. J. Approx. Reason..

[3]  Jerry M. Mendel,et al.  Linguistic Summarization Using IF–THEN Rules and Interval Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.

[4]  Jerry M. Mendel,et al.  Enhanced Interval Approach for Encoding Words Into Interval Type-2 Fuzzy Sets and Its Convergence Analysis , 2012, IEEE Transactions on Fuzzy Systems.

[5]  Jerry M. Mendel,et al.  Uncertainty bounds and their use in the design of interval type-2 fuzzy logic systems , 2002, IEEE Trans. Fuzzy Syst..

[6]  Humberto Bustince,et al.  Construction of Interval-Valued Fuzzy Relations With Application to the Generation of Fuzzy Edge Images , 2011, IEEE Transactions on Fuzzy Systems.

[7]  J. Goguen L-fuzzy sets , 1967 .

[8]  Fevrier Valdez,et al.  Comparative study of bio-inspired algorithms applied to the optimization of type-1 and type-2 fuzzy controllers for an autonomous mobile robot , 2012, Inf. Sci..

[9]  Dongrui Wu,et al.  Interval Type-2 Fuzzy PI Controllers: Why They are More Robust , 2010, 2010 IEEE International Conference on Granular Computing.

[10]  Dongrui Wu,et al.  Computationally Efficient Type-Reduction Strategies for a Type-2 Fuzzy Logic Controller , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[11]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[12]  Robert Ivor John,et al.  Geometric Type-1 and Type-2 Fuzzy Logic Systems , 2007, IEEE Transactions on Fuzzy Systems.

[13]  Mohammad Narimani,et al.  LMI-based stability conditions for interval type-2 fuzzy-model-based control systems , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[14]  Jerry M. Mendel,et al.  Perceptual Computing: Aiding People in Making Subjective Judgments , 2010 .

[15]  Etienne E. Kerre,et al.  On the relationship between some extensions of fuzzy set theory , 2003, Fuzzy Sets Syst..

[16]  Krassimir T. Atanassov,et al.  Intuitionistic Fuzzy Sets - Theory and Applications , 1999, Studies in Fuzziness and Soft Computing.

[17]  Jerry M. Mendel,et al.  On the Stability of Interval Type-2 TSK Fuzzy Logic Control Systems , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[18]  Abdelaziz Hamzaoui,et al.  Second-Order Sliding Fuzzy Interval Type-2 Control for an Uncertain System With Real Application , 2012, IEEE Transactions on Fuzzy Systems.

[19]  Gerardo M. Mendez,et al.  Hybrid learning for interval type-2 fuzzy logic systems based on orthogonal least-squares and back-propagation methods , 2009, Inf. Sci..

[20]  M. Sami Fadali,et al.  Stability Analysis and Control of Discrete Type-1 and Type-2 TSK Fuzzy Systems: Part I. Stability Analysis , 2011, IEEE Transactions on Fuzzy Systems.

[21]  Robert Ivor John,et al.  An Interval Type-2 Fuzzy multiple echelon supply chain model , 2010, Knowl. Based Syst..

[22]  Humberto Bustince,et al.  Generation of linear orders for intervals by means of aggregation functions , 2013, Fuzzy Sets Syst..

[23]  Emmanuel Valvis,et al.  A new linear ordering of fuzzy numbers on subsets of $${{\mathcal F}({\pmb{\mathbb{R}}}})$$ , 2009, Fuzzy Optim. Decis. Mak..

[24]  Chin-Teng Lin,et al.  A Mutually Recurrent Interval Type-2 Neural Fuzzy System (MRIT2NFS) With Self-Evolving Structure and Parameters , 2013, IEEE Transactions on Fuzzy Systems.

[25]  Jianqiang Yi,et al.  On the properties of SIRMs connected type-1 and type-2 fuzzy inference systems , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[26]  Robert Ivor John,et al.  The collapsing method of defuzzification for discretised interval type-2 fuzzy sets , 2009, Inf. Sci..

[27]  Jerry M. Mendel,et al.  On the robustness of Type-1 and Interval Type-2 fuzzy logic systems in modeling , 2011, Inf. Sci..

[28]  Hao Ying,et al.  Derivation and Analysis of the Analytical Structures of the Interval Type-2 Fuzzy-PI and PD Controllers , 2010, IEEE Transactions on Fuzzy Systems.

[29]  Chris Cornelis,et al.  Advances and challenges in interval-valued fuzzy logic , 2006, Fuzzy Sets Syst..

[30]  Dongrui Wu,et al.  On the Fundamental Differences Between Interval Type-2 and Type-1 Fuzzy Logic Controllers , 2012, IEEE Transactions on Fuzzy Systems.

[31]  Jin S. Lee,et al.  Parameter conditions for monotonic Takagi-Sugeno-Kang fuzzy system , 2002, Fuzzy Sets Syst..

[32]  Dongrui Wu,et al.  Approaches for Reducing the Computational Cost of Interval Type-2 Fuzzy Logic Systems: Overview and Comparisons , 2013, IEEE Transactions on Fuzzy Systems.

[33]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[34]  Chia-Feng Juang,et al.  Evolutionary Robot Wall-Following Control Using Type-2 Fuzzy Controller With Species-DE-Activated Continuous ACO , 2013, IEEE Transactions on Fuzzy Systems.

[35]  M. Sami Fadali,et al.  Stability Analysis and Control of Discrete Type-1 and Type-2 TSK Fuzzy Systems: Part II. Control Design , 2011, IEEE Transactions on Fuzzy Systems.

[36]  Lennart Ljung,et al.  Ensuring monotonic gain characteristics in estimated models by fuzzy model structures , 2000, Autom..

[37]  Jerry M. Mendel,et al.  Type-2 fuzzy logic systems , 1999, IEEE Trans. Fuzzy Syst..

[38]  Janusz T. Starczewski Efficient triangular type-2 fuzzy logic systems , 2009, Int. J. Approx. Reason..

[39]  J. Ramík,et al.  Inequality relation between fuzzy numbers and its use in fuzzy optimization , 1985 .

[40]  Humberto Bustince,et al.  Interval Type-2 Fuzzy Sets Constructed From Several Membership Functions: Application to the Fuzzy Thresholding Algorithm , 2013, IEEE Transactions on Fuzzy Systems.

[41]  Witold Pedrycz,et al.  Type-2 Fuzzy Logic: Theory and Applications , 2007, 2007 IEEE International Conference on Granular Computing (GRC 2007).

[42]  Hani Hagras,et al.  Toward General Type-2 Fuzzy Logic Systems Based on zSlices , 2010, IEEE Transactions on Fuzzy Systems.

[43]  Woei Wan Tan,et al.  Analytical Structure and Characteristics of Symmetric Karnik–Mendel Type-Reduced Interval Type-2 Fuzzy PI and PD Controllers , 2012, IEEE Transactions on Fuzzy Systems.

[44]  Hani Hagras,et al.  Interval Type-2 Fuzzy Logic Congestion Control for Video Streaming Across IP Networks , 2009, IEEE Transactions on Fuzzy Systems.

[45]  Chee Peng Lim,et al.  Optimization of Gaussian fuzzy membership functions and evaluation of the monotonicity property of Fuzzy Inference Systems , 2011, 2011 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2011).

[46]  Nohe Ramón Cazarez Castro,et al.  Diseño de controladores difusos tipo-1 a través de La Síntesis Difusa de Lyapunov para sistemas mecánicos no suaves: el caso perturbado , 2011 .

[47]  Yannis A. Phillis,et al.  On the monotonicity of hierarchical sum-product fuzzy systems , 2009, Fuzzy Sets Syst..

[48]  Hiroaki Ishii,et al.  On the Monotonicity of Fuzzy-Inference Methods Related to T–S Inference Method , 2010, IEEE Transactions on Fuzzy Systems.

[49]  Emmanuel Valvis A new linear ordering of fuzzy numbers on subsets of F (\pmb\mathbb R ). , 2009 .

[50]  Hassan Nouri,et al.  Noninteracting Adaptive Control of PMSM Using Interval Type-2 Fuzzy Logic Systems , 2011, IEEE Transactions on Fuzzy Systems.

[51]  Robert Ivor John,et al.  A Fast Geometric Method for Defuzzification of Type-2 Fuzzy Sets , 2008, IEEE Transactions on Fuzzy Systems.

[52]  Milos Manic,et al.  Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot , 2011, IEEE Transactions on Industrial Informatics.

[53]  Woei Wan Tan,et al.  Towards an efficient type-reduction method for interval type-2 fuzzy logic systems , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[54]  Nohé R. Cázarez-Castro,et al.  Designing Type-1 and Type-2 Fuzzy Logic Controllers via Fuzzy Lyapunov Synthesis for nonsmooth mechanical systems , 2012, Eng. Appl. Artif. Intell..

[55]  Jerry M. Mendel,et al.  Interval Type-2 Fuzzy Logic Systems Made Simple , 2006, IEEE Transactions on Fuzzy Systems.

[56]  Jerry M. Mendel,et al.  On the Continuity of Type-1 and Interval Type-2 Fuzzy Logic Systems , 2011, IEEE Transactions on Fuzzy Systems.

[57]  Ming Wang,et al.  Monotonic type-2 fuzzy neural network and its application to thermal comfort prediction , 2012, Neural Computing and Applications.

[58]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[59]  Jerry M. Mendel,et al.  On KM Algorithms for Solving Type-2 Fuzzy Set Problems , 2013, IEEE Transactions on Fuzzy Systems.

[60]  Hak-Keung Lam,et al.  Stability Analysis of Interval Type-2 Fuzzy-Model-Based Control Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[61]  Jianqiang Yi,et al.  Stability analysis of SIRMs based type-2 fuzzy logic control systems , 2010, International Conference on Fuzzy Systems.

[62]  Jianqiang Yi,et al.  Analysis and design of monotonic type-2 fuzzy inference systems , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[63]  Humberto Bustince,et al.  Interval-valued fuzzy sets constructed from matrices: Application to edge detection , 2009, Fuzzy Sets Syst..

[64]  Hani Hagras,et al.  Towards the Wide Spread Use of Type-2 Fuzzy Logic Systems in Real World Applications , 2012, IEEE Computational Intelligence Magazine.

[65]  Bernard De Baets,et al.  Monotone Mamdani-Assilian models under mean of maxima defuzzification , 2008, Fuzzy Sets Syst..

[66]  Jianqiang Yi,et al.  ENCODING PRIOR KNOWLEDGE INTO DATA DRIVEN DESIGN OF INTERVAL TYPE-2 FUZZY LOGIC SYSTEMS , 2011 .

[67]  Oscar Castillo,et al.  A review on the design and optimization of interval type-2 fuzzy controllers , 2012, Appl. Soft Comput..

[68]  Jerry M. Mendel,et al.  Connect Karnik-Mendel Algorithms to Root-Finding for Computing the Centroid of an Interval Type-2 Fuzzy Set , 2011, IEEE Transactions on Fuzzy Systems.

[69]  Shie-Jue Lee,et al.  An Enhanced Type-Reduction Algorithm for Type-2 Fuzzy Sets , 2011, IEEE Transactions on Fuzzy Systems.