Evolutionary Trajectories are Contingent on Mitonuclear Interactions

Critical mitochondrial functions, including cellular respiration, rely on frequently interacting components expressed from both the mitochondrial and nuclear genomes. The fitness of eukaryotic organisms depends on a tight collaboration between both genomes. In the face of an elevated rate of evolution in the mitochondrial genome, current models predict that maintenance of mitonuclear compatibility relies on compensatory evolution of the nuclear genome. Mitonuclear interactions would therefore exert an influence on evolutionary trajectories. One prediction from this model is that the same nuclear genomes but evolving with different mitochondrial haplotypes would follow distinct molecular paths towards higher fitness peaks. To test this prediction, we submitted 1344 populations derived from seven mitonuclear genotypes of Saccharomyces cerevisiae to more than 300 generations of experimental evolution in conditions that either select for a mitochondrial function, or that do not strictly require respiration for survival. Performing high-throughput phenotyping and whole-genome sequencing on independently evolved individuals isolated from endpoint populations, we identified numerous examples of gene-level evolutionary convergence among populations with the same mitonuclear background. Phenotypic and genotypic data on strains derived from this evolution experiment identify the nuclear genome and the environment as the main determinants of evolutionary divergence, but also show a modulating role for the mitochondrial genome exerted both directly and via interactions with the two other components. We finally recapitulated a subset of prominent loss-of-function alleles in the ancestral backgrounds and confirmed a generalized pattern of mitonuclear-specific and highly epistatic fitness effects. Together, these results demonstrate how mitonuclear interactions can dictate evolutionary divergence of populations with identical starting nuclear genotypes.

[1]  A. Friedrich,et al.  Loss-of-function mutation survey revealed that genes with background-dependent fitness are rare and functionally related in yeast , 2022, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Jianzhi Zhang,et al.  Transposon insertional mutagenesis of diverse yeast strains suggests coordinated gene essentiality polymorphisms , 2022, Nature Communications.

[3]  R. Burton The role of mitonuclear incompatibilities in allopatric speciation , 2022, Cellular and Molecular Life Sciences.

[4]  S. Archer,et al.  Mitochondrial iron–sulfur clusters: Structure, function, and an emerging role in vascular biology , 2021, Redox biology.

[5]  S. Puig,et al.  Regulation of Ergosterol Biosynthesis in Saccharomyces cerevisiae , 2020, Genes.

[6]  T. H. Nguyen,et al.  Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae , 2020, BMC evolutionary biology.

[7]  P. Blier,et al.  From Africa to Antarctica: Exploring the Metabolism of Fish Heart Mitochondria Across a Wide Thermal Range , 2019, Front. Physiol..

[8]  R. Sharan,et al.  Genome architecture and stability in the Saccharomyces cerevisiae knockout collection , 2019, Nature.

[9]  Michael J McDonald,et al.  Microbial Experimental Evolution – a proving ground for evolutionary theory and a tool for discovery , 2019, EMBO reports.

[10]  C. Landry,et al.  Spontaneous whole-genome duplication restores fertility in interspecific hybrids , 2019, Nature Communications.

[11]  Daniel A. Skelly,et al.  Mitochondrial Genome Variation Affects Multiple Respiration and Nonrespiration Phenotypes in Saccharomyces cerevisiae , 2018, Genetics.

[12]  J. Ross,et al.  The Genetic Architecture of Intra-Species Hybrid Mito-Nuclear Epistasis , 2018, Front. Genet..

[13]  J. Nielsen,et al.  Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. , 2018, FEMS yeast research.

[14]  R. Burton,et al.  Genomic signatures of mitonuclear coevolution across populations of Tigriopus californicus , 2018, Nature Ecology & Evolution.

[15]  C. Landry,et al.  Mitochondrial Recombination Reveals Mito–Mito Epistasis in Yeast , 2018, Genetics.

[16]  R. Lenski,et al.  Experimental evolution and the dynamics of adaptation and genome evolution in microbial populations , 2017, The ISME Journal.

[17]  Daniel B. Sloan,et al.  The Roles of Mutation, Selection, and Expression in Determining Relative Rates of Evolution in Mitochondrial versus Nuclear Genomes. , 2016, Molecular biology and evolution.

[18]  L. Laurent,et al.  Incompatibility between Nuclear and Mitochondrial Genomes Contributes to an Interspecies Reproductive Barrier. , 2016, Cell metabolism.

[19]  M. Raghuraman,et al.  rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants , 2016, G3: Genes, Genomes, Genetics.

[20]  John F. Wolters,et al.  Population structure of mitochondrial genomes in Saccharomyces cerevisiae , 2015, BMC Genomics.

[21]  A. Friedrich,et al.  Mitochondrial genome evolution in yeasts: an all-encompassing view. , 2015, FEMS yeast research.

[22]  O. Tenaillon,et al.  The rule of declining adaptability in microbial evolution experiments , 2015, Front. Genet..

[23]  J. Rutter,et al.  Power2: The power of yeast genetics applied to the powerhouse of the cell , 2015, Trends in Endocrinology & Metabolism.

[24]  P. Sulo,et al.  Post-zygotic sterility and cytonuclear compatibility limits in S. cerevisiae xenomitochondrial cybrids , 2015, Front. Genet..

[25]  G. Hill Mitonuclear Ecology. , 2015, Molecular biology and evolution.

[26]  Swati Paliwal,et al.  Mitochondrial-Nuclear Epistasis Contributes to Phenotypic Variation and Coadaptation in Natural Isolates of Saccharomyces cerevisiae , 2014, Genetics.

[27]  L. Steinmetz,et al.  A Genome-Wide Map of Mitochondrial DNA Recombination in Yeast , 2014, Genetics.

[28]  J. Enríquez,et al.  Mitonuclear interactions: evolutionary consequences over multiple biological scales , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  M. Lässig,et al.  A predictive fitness model for influenza , 2014, Nature.

[30]  N. Larsson,et al.  No recombination of mtDNA after heteroplasmy for 50 generations in the mouse maternal germline , 2013, Nucleic acids research.

[31]  Daniel J. Kvitek,et al.  Whole Genome, Whole Population Sequencing Reveals That Loss of Signaling Networks Is the Major Adaptive Strategy in a Constant Environment , 2013, PLoS genetics.

[32]  Michael Doebeli,et al.  Parallel Evolutionary Dynamics of Adaptive Diversification in Escherichia coli , 2013, PLoS biology.

[33]  R. Burton,et al.  A disproportionate role for mtDNA in Dobzhansky–Muller incompatibilities? , 2012, Molecular ecology.

[34]  A. F. Bennett,et al.  The Molecular Diversity of Adaptive Convergence , 2012, Science.

[35]  Jeffrey E. Barrick,et al.  Repeatability and Contingency in the Evolution of a Key Innovation in Phage Lambda , 2012, Science.

[36]  L. Marechal-Drouard Mitochondrial genome evolution , 2012 .

[37]  B. Robinson,et al.  LRPPRC mutation suppresses cytochrome oxidase activity by altering mitochondrial RNA transcript stability in a mouse model. , 2012, The Biochemical journal.

[38]  N. Lane Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations , 2011, BioEssays : news and reviews in molecular, cellular and developmental biology.

[39]  Michael M. Desai,et al.  Genetic Variation and the Fate of Beneficial Mutations in Asexual Populations , 2011, Genetics.

[40]  Nigel F. Delaney,et al.  Diminishing Returns Epistasis Among Beneficial Mutations Decelerates Adaptation , 2011, Science.

[41]  W. Martin,et al.  The energetics of genome complexity , 2010, Nature.

[42]  J. Leu,et al.  Multiple Molecular Mechanisms Cause Reproductive Isolation between Three Yeast Species , 2010, PLoS biology.

[43]  Dongsup Kim,et al.  Analysis of a genome-wide set of gene deletions in the fission yeast Schizosaccharomyces pombe , 2010, Nature Biotechnology.

[44]  P. Blier,et al.  Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication , 2009, Genetics.

[45]  Peter L. Meintjes,et al.  Adaptive Divergence in Experimental Populations of Pseudomonas fluorescens. IV. Genetic Constraints Guide Evolutionary Trajectories in a Parallel Adaptive Radiation , 2009, Genetics.

[46]  F. Fontanesi,et al.  Evaluation of the Mitochondrial Respiratory Chain and Oxidative Phosphorylation System Using Polarography and Spectrophotometric Enzyme Assays , 2009, Current protocols in human genetics.

[47]  Sean R. Collins,et al.  A comprehensive strategy enabling high-resolution functional analysis of the yeast genome , 2008, Nature Methods.

[48]  W. J. Dickinson,et al.  A genome-wide view of the spectrum of spontaneous mutations in yeast , 2008, Proceedings of the National Academy of Sciences.

[49]  R. Lenski,et al.  Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli , 2008 .

[50]  J. Bull,et al.  Predicting evolution from genomics: experimental evolution of bacteriophage T7 , 2008, Heredity.

[51]  A. J. Bendich The size and form of chromosomes are constant in the nucleus, but highly variable in bacteria, mitochondria and chloroplasts. , 2007, BioEssays : news and reviews in molecular, cellular and developmental biology.

[52]  G. Barker,et al.  Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). , 2006, American journal of botany.

[53]  Nigel F. Delaney,et al.  Darwinian Evolution Can Follow Only Very Few Mutational Paths to Fitter Proteins , 2006, Science.

[54]  Michael Lynch,et al.  Mutation Pressure and the Evolution of Organelle Genomic Architecture , 2006, Science.

[55]  G. Bernardi Lessons from a small, dispensable genome: the mitochondrial genome of yeast. , 2005, Gene.

[56]  R. Lightowlers,et al.  Why do mammalian mitochondria possess a mismatch repair activity? , 2003, FEBS letters.

[57]  John F. Allen,et al.  The function of genomes in bioenergetic organelles. , 2003, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  R. Lenski,et al.  Parallel changes in gene expression after 20,000 generations of evolution in Escherichia coli , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Piškur,et al.  Functional co-operation between the nuclei of Saccharomyces cerevisiae and mitochondria from other yeast species , 2000, Current Genetics.

[60]  I. Trounce,et al.  Expression of Rattus norvegicus mtDNA inMus musculus Cells Results in Multiple Respiratory Chain Defects* , 2000, The Journal of Biological Chemistry.

[61]  H. Yonekawa,et al.  Complete repopulation of mouse mitochondrial DNA-less cells with rat mitochondrial DNA restores mitochondrial translation but not mitochondrial respiratory function. , 2000, Genetics.

[62]  J. Bull,et al.  Different trajectories of parallel evolution during viral adaptation. , 1999, Science.

[63]  C. Moraes,et al.  Human Xenomitochondrial Cybrids , 1998, The Journal of Biological Chemistry.

[64]  C. Moraes,et al.  Expanding the functional human mitochondrial DNA database by the establishment of primate xenomitochondrial cybrids. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Michel,et al.  Cytochrome c oxidase. , 1996, Current opinion in structural biology.

[66]  A. J. Bendich Structural analysis of mitochondrial DNA molecules from fungi and plants using moving pictures and pulsed-field gel electrophoresis. , 1996, Journal of molecular biology.

[67]  Yusef Komunyakaa,et al.  The second set , 1996 .

[68]  G. C. Ferreira Heme biosynthesis: Biochemistry, molecular biology, and relationship to disease , 1995, Journal of bioenergetics and biomembranes.

[69]  J. A. Freedman,et al.  Cytochrome c oxidase: structure, function, and membrane topology of the polypeptide subunits. , 1991, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[70]  G. Bernardi,et al.  The orir to ori+ mutation in spontaneous yeast petites is accompanied by a drastic change in mitochondrial genome replication. , 1983, Gene.

[71]  G. Bernardi,et al.  The origins of replication of the yeast mitochondrial genome and the phenomenon of suppressivity , 1981, Nature.