Biocompatible MEMS Electrode Array for Determination of Three-Dimensional Strain

Sensor arrays for the measurement of the load condition of polyethylene spacers in the total knee arthroplasty (TKA) prosthesis have been developed. Arrays of capacitive sensors are used to determine the three-dimensional strain within the polyethylene prosthesis component. Data from these sensors can be used to give researchers better understanding of component motion, loading, and wear phenomena for a large range of activities. These sensors implemented on a large scale will give clinicians feedback for individual patient biomechanics without the requirement for patient exposure to X-ray radiation. Patients will benefit from smart prosthetic components which allow clinicians monitor biomechanics and loading by applying noninvasive remedies such as orthotics or physical therapy for patients exhibiting poor biomechanics before wear or component failure become issues. In this paper, we present research regarding the design of a biocompatible strain sensor and the fabrication of microelectrode arrays on biocompatible polymer materials