ER structure and function.

[1]  G. Voeltz,et al.  Rab10 GTPase regulates ER dynamics and morphology , 2012, Nature Cell Biology.

[2]  T. Rapoport,et al.  Lipid interaction of the C terminus and association of the transmembrane segments facilitate atlastin-mediated homotypic endoplasmic reticulum fusion , 2012, Proceedings of the National Academy of Sciences.

[3]  R. Hirata,et al.  High-curvature domains of the ER are important for the organization of ER exit sites in Saccharomyces cerevisiae , 2012, Journal of Cell Science.

[4]  C. Blackstone,et al.  Cellular pathways of hereditary spastic paraplegia. , 2012, Annual review of neuroscience.

[5]  P. Novick,et al.  ER network formation requires a balance of the dynamin-like GTPase Sey1p and Lnp1p, a member of the Lunapark family , 2012, Nature Cell Biology.

[6]  T. Rapoport,et al.  The dynamin-like GTPase Sey1p mediates homotypic ER fusion in S. cerevisiae , 2012, The Journal of cell biology.

[7]  R. Schekman,et al.  COPII and the regulation of protein sorting in mammals , 2012, Nature Cell Biology.

[8]  J. Friedman,et al.  The ER in 3D: a multifunctional dynamic membrane network. , 2011, Trends in cell biology.

[9]  S. Moro,et al.  GTP-dependent packing of a three-helix bundle is required for atlastin-mediated fusion , 2011, Proceedings of the National Academy of Sciences.

[10]  T. Rapoport,et al.  Structures of the atlastin GTPase provide insight into homotypic fusion of endoplasmic reticulum membranes , 2011, Proceedings of the National Academy of Sciences.

[11]  C. Blackstone,et al.  Hereditary spastic paraplegias: membrane traffic and the motor pathway , 2011, Nature Reviews Neuroscience.

[12]  O. Daumke,et al.  Structural insights into membrane fusion at the endoplasmic reticulum , 2011, Proceedings of the National Academy of Sciences.

[13]  H. Sondermann,et al.  Structural basis for the nucleotide-dependent dimerization of the large G protein atlastin-1/SPG3A , 2011, Proceedings of the National Academy of Sciences.

[14]  Yoko Shibata,et al.  Mechanisms Determining the Morphology of the Peripheral ER , 2010, Cell.

[15]  C. Blackstone,et al.  Emerging themes of ER organization in the development and maintenance of axons , 2010, Current Opinion in Neurobiology.

[16]  David N. Mastronarde,et al.  ER sliding dynamics and ER–mitochondrial contacts occur on acetylated microtubules , 2010, The Journal of cell biology.

[17]  L. Griffing Networking in the endoplasmic reticulum. , 2010, Biochemical Society transactions.

[18]  C. Blackstone,et al.  Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. , 2010, The Journal of clinical investigation.

[19]  Yoko Shibata,et al.  A Class of Dynamin-like GTPases Involved in the Generation of the Tubular ER Network , 2009, Cell.

[20]  T. Kirchhausen,et al.  Cisternal organization of the endoplasmic reticulum during mitosis. , 2009, Molecular biology of the cell.

[21]  A. Martinuzzi,et al.  Homotypic fusion of ER membranes requires the dynamin-like GTPase Atlastin , 2009, Nature.

[22]  V. Allan,et al.  Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells , 2009, Journal of Cell Science.

[23]  T. Dawson,et al.  ER membrane–bending proteins are necessary for de novo nuclear pore formation , 2009, The Journal of cell biology.

[24]  M. Hetzer,et al.  Reshaping of the endoplasmic reticulum limits the rate for nuclear envelope formation , 2008, The Journal of cell biology.

[25]  T. Rapoport,et al.  The Reticulon and Dp1/Yop1p Proteins Form Immobile Oligomers in the Tubular Endoplasmic Reticulum , 2008, Journal of Biological Chemistry.

[26]  T. Rapoport,et al.  Membrane Proteins of the Endoplasmic Reticulum Induce High-Curvature Tubules , 2008, Science.

[27]  C. Hoogenraad,et al.  STIM1 Is a MT-Plus-End-Tracking Protein Involved in Remodeling of the ER , 2008, Current Biology.

[28]  Marie Gomez,et al.  The evolutionarily conserved gene LNP‐1 is required for synaptic vesicle trafficking and synaptic transmission , 2008, The European journal of neuroscience.

[29]  E. Kiseleva,et al.  Reticulon 4a/NogoA locates to regions of high membrane curvature and may have a role in nuclear envelope growth , 2007, Journal of structural biology.

[30]  Keisuke Tanaka,et al.  p180 is involved in the interaction between the endoplasmic reticulum and microtubules through a novel microtubule-binding and bundling domain. , 2007, Molecular biology of the cell.

[31]  P. Novick,et al.  Ptc1p regulates cortical ER inheritance via Slt2p , 2006, The EMBO journal.

[32]  J. Yates,et al.  Rtn1p is involved in structuring the cortical endoplasmic reticulum. , 2006, Molecular biology of the cell.

[33]  T. Rapoport,et al.  A Class of Membrane Proteins Shaping the Tubular Endoplasmic Reticulum , 2006, Cell.

[34]  H. Riezman,et al.  Differential ER exit in yeast and mammalian cells. , 2004, Current opinion in cell biology.

[35]  P. Novick,et al.  Dynamics and inheritance of the endoplasmic reticulum , 2004, Journal of Cell Science.

[36]  Jiwon Kim,et al.  Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae , 2003, The Journal of cell biology.

[37]  J. Andrade,et al.  The EF-hand Ca2+-binding protein p22 plays a role in microtubule and endoplasmic reticulum organization and dynamics with distinct Ca2+-binding requirements. , 2003, Molecular biology of the cell.

[38]  P. Novick,et al.  Sec3p is needed for the spatial regulation of secretion and for the inheritance of the cortical endoplasmic reticulum. , 2003, Molecular biology of the cell.

[39]  Denis Duboule,et al.  A Global Control Region Defines a Chromosomal Regulatory Landscape Containing the HoxD Cluster , 2003, Cell.

[40]  T. Rapoport,et al.  Structural organization of the endoplasmic reticulum , 2002, EMBO reports.

[41]  I. Boldogh,et al.  Endoplasmic reticulum dynamics, inheritance, and cytoskeletal interactions in budding yeast. , 2002, Molecular biology of the cell.

[42]  P. Silver,et al.  Mutants Affecting the Structure of the Cortical Endoplasmic Reticulum in Saccharomyces cerevisiae , 2000, The Journal of cell biology.

[43]  Tom A. Rapoport,et al.  In Vitro Formation of the Endoplasmic Reticulum Occurs Independently of Microtubules by a Controlled Fusion Reaction , 2000, The Journal of cell biology.

[44]  H. Hauri,et al.  A novel direct interaction of endoplasmic reticulum with microtubules , 1998, The EMBO journal.

[45]  E. Salmon,et al.  Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms , 1998, Current Biology.

[46]  L. Chen,et al.  Dynamic behavior of endoplasmic reticulum in living cells , 1988, Cell.

[47]  K. Fujiwara,et al.  Microtubules and the endoplasmic reticulum are highly interdependent structures , 1986, The Journal of cell biology.

[48]  P. Novick,et al.  Activation of the mitogen-activated protein kinase, Slt2p, at bud tips blocks a late stage of endoplasmic reticulum inheritance in Saccharomyces cerevisiae. , 2010, Molecular biology of the cell.

[49]  B. Walz,et al.  Endoplasmic reticulum of animal cells and its organization into structural and functional domains. , 2001, International review of cytology.