Quantum machine learning: a classical perspective

Recently, increased computational power and data availability, as well as algorithmic advances, have led machine learning (ML) techniques to impressive results in regression, classification, data generation and reinforcement learning tasks. Despite these successes, the proximity to the physical limits of chip fabrication alongside the increasing size of datasets is motivating a growing number of researchers to explore the possibility of harnessing the power of quantum computation to speed up classical ML algorithms. Here we review the literature in quantum ML and discuss perspectives for a mixed readership of classical ML and quantum computation experts. Particular emphasis will be placed on clarifying the limitations of quantum algorithms, how they compare with their best classical counterparts and why quantum resources are expected to provide advantages for learning problems. Learning in the presence of noise and certain computationally hard problems in ML are identified as promising directions for the field. Practical questions, such as how to upload classical data into quantum form, will also be addressed.

[1]  QUANTITATIVE STUDIES , 1967 .

[2]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[3]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[4]  Elwyn R. Berlekamp,et al.  On the inherent intractability of certain coding problems (Corresp.) , 1978, IEEE Trans. Inf. Theory.

[5]  D. Heller A Survey of Parallel Algorithms in Numerical Linear Algebra. , 1978 .

[6]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[7]  F. Barahona On the computational complexity of Ising spin glass models , 1982 .

[8]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[9]  Gene H. Golub,et al.  Matrix computations , 1983 .

[10]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[11]  Scott Kirkpatrick,et al.  Optimization by simulated annealing: Quantitative studies , 1984 .

[12]  Paul Smolensky,et al.  Information processing in dynamical systems: foundations of harmony theory , 1986 .

[13]  Yves Robert,et al.  Complexity of parallel QR factorization , 1986, JACM.

[14]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[15]  Dana Angluin,et al.  Queries and concept learning , 1988, Machine Learning.

[16]  J. G. Pierce,et al.  Geometric Algorithms and Combinatorial Optimization , 2016 .

[17]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[18]  Karsten A. Verbeurgt Learning DNF under the uniform distribution in quasi-polynomial time , 1990, COLT '90.

[19]  Gregory F. Cooper,et al.  The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks , 1990, Artif. Intell..

[20]  L. Bottou Stochastic Gradient Learning in Neural Networks , 1991 .

[21]  Alistair Sinclair,et al.  Algorithms for Random Generation and Counting: A Markov Chain Approach , 1993, Progress in Theoretical Computer Science.

[22]  Alistair Sinclair Markov chains and rapid mixing , 1993 .

[23]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[24]  Leslie G. Valiant,et al.  Cryptographic Limitations on Learning Boolean Formulae and Finite Automata , 1993, Machine Learning: From Theory to Applications.

[25]  Yishay Mansour,et al.  Weakly learning DNF and characterizing statistical query learning using Fourier analysis , 1994, STOC '94.

[26]  J. Shewchuk An Introduction to the Conjugate Gradient Method Without the Agonizing Pain , 1994 .

[27]  Sampath Kannan,et al.  Oracles and queries that are sufficient for exact learning (extended abstract) , 1994, COLT '94.

[28]  Sampath Kannan,et al.  Oracles and Queries That Are Sufficient for Exact Learning , 1996, J. Comput. Syst. Sci..

[29]  Subhash C. Kak,et al.  On Quantum Neural Computing , 1995, Inf. Sci..

[30]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[31]  Christopher M. Bishop,et al.  Current address: Microsoft Research, , 2022 .

[32]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[33]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[34]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[35]  Guozhong An,et al.  The Effects of Adding Noise During Backpropagation Training on a Generalization Performance , 1996, Neural Computation.

[36]  Gilles Brassard,et al.  Strengths and Weaknesses of Quantum Computing , 1997, SIAM J. Comput..

[37]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[38]  Peter W. Shor,et al.  Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..

[39]  Alexander Schrijver,et al.  A Combinatorial Algorithm Minimizing Submodular Functions in Strongly Polynomial Time , 2000, J. Comb. Theory B.

[40]  M. Sipser,et al.  Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.

[41]  Edward Farhi,et al.  A Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability , 2000, ArXiv.

[42]  B. Schölkopf,et al.  Sparse Greedy Matrix Approximation for Machine Learning , 2000, ICML.

[43]  G. Brassard,et al.  Quantum Amplitude Amplification and Estimation , 2000, quant-ph/0005055.

[44]  Christopher K. I. Williams,et al.  Using the Nyström Method to Speed Up Kernel Machines , 2000, NIPS.

[45]  Satoru Iwata,et al.  A combinatorial strongly polynomial algorithm for minimizing submodular functions , 2001, JACM.

[46]  Shai Ben-David,et al.  Limitations of Learning Via Embeddings in Euclidean Half Spaces , 2003, J. Mach. Learn. Res..

[47]  Rocco A. Servedio,et al.  Learning DNF in time , 2001, STOC '01.

[48]  Nando de Freitas,et al.  An Introduction to Sequential Monte Carlo Methods , 2001, Sequential Monte Carlo Methods in Practice.

[49]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[50]  Felipe Cucker,et al.  On the mathematical foundations of learning , 2001 .

[51]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[52]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[53]  Shang-Hua Teng,et al.  Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time , 2001, STOC '01.

[54]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[55]  Johan Håstad,et al.  Some optimal inapproximability results , 2001, JACM.

[56]  R. Xu,et al.  Theory of open quantum systems , 2002 .

[57]  I. Jolliffe Principal Component Analysis , 2002 .

[58]  Lov K. Grover,et al.  Creating superpositions that correspond to efficiently integrable probability distributions , 2002, quant-ph/0208112.

[59]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[60]  Geoffrey E. Hinton Training Products of Experts by Minimizing Contrastive Divergence , 2002, Neural Computation.

[61]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  Sean Hallgren,et al.  Quantum algorithms for some hidden shift problems , 2003, SODA '03.

[63]  Rocco A. Servedio,et al.  Maximum Margin Algorithms with Boolean Kernels , 2005, J. Mach. Learn. Res..

[64]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[65]  Alan M. Frieze,et al.  Fast monte-carlo algorithms for finding low-rank approximations , 2004, JACM.

[66]  Ben Reichardt,et al.  The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.

[67]  M. Szegedy,et al.  Quantum Walk Based Search Algorithms , 2008, TAMC.

[68]  Seth Lloyd,et al.  Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[69]  Rocco A. Servedio,et al.  Equivalences and Separations Between Quantum and Classical Learnability , 2004, SIAM J. Comput..

[70]  T. Lumley,et al.  PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS , 2004, Statistical Methods for Biomedical Research.

[71]  Andris Ambainis,et al.  Coins make quantum walks faster , 2004, SODA '05.

[72]  Vadim Lyubashevsky,et al.  The Parity Problem in the Presence of Noise, Decoding Random Linear Codes, and the Subset Sum Problem , 2005, APPROX-RANDOM.

[73]  Rocco A. Servedio,et al.  Improved Bounds on Quantum Learning Algorithms , 2004, Quantum Inf. Process..

[74]  Kilian Q. Weinberger,et al.  Graph Laplacian Regularization for Large-Scale Semidefinite Programming , 2006, NIPS.

[75]  H. Krovi,et al.  Hitting time for quantum walks on the hypercube (8 pages) , 2005, quant-ph/0510136.

[76]  Gerhard Weikum,et al.  WWW 2007 / Track: Semantic Web Session: Ontologies ABSTRACT YAGO: A Core of Semantic Knowledge , 2022 .

[77]  Lorenzo Rosasco,et al.  On regularization algorithms in learning theory , 2007, J. Complex..

[78]  Sanjeev Arora,et al.  A combinatorial, primal-dual approach to semidefinite programs , 2007, STOC '07.

[79]  Sean Hallgren Polynomial-time quantum algorithms for Pell's equation and the principal ideal problem , 2007, JACM.

[80]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[81]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[82]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[83]  Andrew McCallum,et al.  Introduction to Statistical Relational Learning , 2007 .

[84]  E. Knill,et al.  Optimal quantum measurements of expectation values of observables , 2006, quant-ph/0607019.

[85]  A. Caponnetto,et al.  Optimal Rates for the Regularized Least-Squares Algorithm , 2007, Found. Comput. Math..

[86]  Jeff A. Bilmes,et al.  Local Search for Balanced Submodular Clusterings , 2007, IJCAI.

[87]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[88]  S. Lloyd,et al.  Architectures for a quantum random access memory , 2008, 0807.4994.

[89]  A. Young,et al.  Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.

[90]  E. Knill,et al.  Quantum simulations of classical annealing processes. , 2008, Physical review letters.

[91]  Seth Lloyd,et al.  Quantum random access memory. , 2007, Physical review letters.

[92]  Jean-Philippe Vert,et al.  Group lasso with overlap and graph lasso , 2009, ICML '09.

[93]  Andris Ambainis,et al.  The Need for Structure in Quantum Speedups , 2009, Theory Comput..

[94]  Lance Fortnow,et al.  The status of the P versus NP problem , 2009, CACM.

[95]  Steve Mullett,et al.  Read the fine print. , 2009, RN.

[96]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[97]  Shang-Hua Teng,et al.  Smoothed analysis: an attempt to explain the behavior of algorithms in practice , 2009, CACM.

[98]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[99]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[100]  P. Wocjan,et al.  Quantum algorithm for approximating partition functions , 2008, 0811.0596.

[101]  Andrew M. Childs Quantum algorithms: Equation solving by simulation , 2009 .

[102]  James B. Orlin,et al.  A faster strongly polynomial time algorithm for submodular function minimization , 2007, Math. Program..

[103]  Song Li Fast algorithms for sparse matrix inverse computations , 2009 .

[104]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[105]  D. Poulin,et al.  Sampling from the thermal quantum Gibbs state and evaluating partition functions with a quantum computer. , 2009, Physical review letters.

[106]  H. Krovi,et al.  Adiabatic condition and the quantum hitting time of Markov chains , 2010, 1004.2721.

[107]  By W. R. GILKSt,et al.  Adaptive Rejection Sampling for Gibbs Sampling , 2010 .

[108]  Michael I. Jordan,et al.  On the Consistency of Ranking Algorithms , 2010, ICML.

[109]  Pawel Wocjan,et al.  Quantum algorithm for preparing thermal Gibbs states - detailed analysis , 2010, Quantum Cryptography and Computing.

[110]  Dave Bacon,et al.  Recent progress in quantum algorithms , 2010, Commun. ACM.

[111]  S. Boixo,et al.  Preparing thermal states of quantum systems by dimension reduction. , 2010, Physical review letters.

[112]  Chi Zhang,et al.  An improved lower bound on query complexity for quantum PAC learning , 2010, Inf. Process. Lett..

[113]  A. Young,et al.  First-order phase transition in the quantum adiabatic algorithm. , 2009, Physical review letters.

[114]  Rocco A. Servedio,et al.  Restricted Boltzmann Machines are Hard to Approximately Evaluate or Simulate , 2010, ICML.

[115]  Estevam R. Hruschka,et al.  Toward an Architecture for Never-Ending Language Learning , 2010, AAAI.

[116]  Search via Quantum Walk , 2006, SIAM J. Comput..

[117]  Radford M. Neal Probabilistic Inference Using Markov Chain Monte Carlo Methods , 2011 .

[118]  Philipp Birken,et al.  Numerical Linear Algebra , 2011, Encyclopedia of Parallel Computing.

[119]  Itay Hen,et al.  Exponential Complexity of the Quantum Adiabatic Algorithm for certain Satisfiability Problems , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[120]  Nando de Freitas,et al.  Toward the Implementation of a Quantum RBM , 2011 .

[121]  Misha Denil Toward the Implementation of a Quantum RBM , 2011 .

[122]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[123]  Salil P. Vadhan,et al.  Computational Complexity , 2005, Encyclopedia of Cryptography and Security.

[124]  F. Verstraete,et al.  Quantum Metropolis sampling , 2009, Nature.

[125]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[126]  B. Recht,et al.  Tensor completion and low-n-rank tensor recovery via convex optimization , 2011 .

[127]  Hui Lin,et al.  A Class of Submodular Functions for Document Summarization , 2011, ACL.

[128]  Eric Darve,et al.  Extension and optimization of the FIND algorithm: Computing Green's and less-than Green's functions , 2011, J. Comput. Phys..

[129]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[130]  Martin Schwarz,et al.  Preparing projected entangled pair states on a quantum computer. , 2011, Physical review letters.

[131]  P. Shor,et al.  Performance of the quantum adiabatic algorithm on random instances of two optimization problems on regular hypergraphs , 2012, 1208.3757.

[132]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[133]  Andris Ambainis,et al.  Variable time amplitude amplification and quantum algorithms for linear algebra problems , 2012, STACS.

[134]  Massimiliano Pontil,et al.  A New Convex Relaxation for Tensor Completion , 2013, NIPS.

[135]  B. D. Clader,et al.  Preconditioned quantum linear system algorithm. , 2013, Physical review letters.

[136]  Martin J. Wainwright,et al.  Divide and Conquer Kernel Ridge Regression , 2013, COLT.

[137]  Massimiliano Pontil,et al.  Multilinear Multitask Learning , 2013, ICML.

[138]  Johan A. K. Suykens,et al.  Learning with tensors: a framework based on convex optimization and spectral regularization , 2014, Machine Learning.

[139]  Christopher J. Hillar,et al.  Most Tensor Problems Are NP-Hard , 2009, JACM.

[140]  Scott Aaronson,et al.  Quantum Computing since Democritus , 2013 .

[141]  Andrea Montanari,et al.  A statistical model for tensor PCA , 2014, NIPS.

[142]  Anupam Prakash,et al.  Quantum algorithms for linear algebra and machine learning , 2014 .

[143]  Yoshua Bengio,et al.  On the Challenges of Physical Implementations of RBMs , 2013, AAAI.

[144]  Bo Huang,et al.  Square Deal: Lower Bounds and Improved Relaxations for Tensor Recovery , 2013, ICML.

[145]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm Applied to a Bounded Occurrence Constraint Problem , 2014, 1412.6062.

[146]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[147]  Anton van den Hengel,et al.  Semidefinite Programming , 2014, Computer Vision, A Reference Guide.

[148]  Maria Schuld,et al.  The quest for a Quantum Neural Network , 2014, Quantum Information Processing.

[149]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[150]  Igor L. Markov,et al.  Limits on fundamental limits to computation , 2014, Nature.

[151]  Wei Zhang,et al.  Knowledge vault: a web-scale approach to probabilistic knowledge fusion , 2014, KDD.

[152]  E. Farhi,et al.  A Quantum Approximate Optimization Algorithm , 2014, 1411.4028.

[153]  Matthew Day,et al.  Advances in quantum machine learning , 2015, 1512.02900.

[154]  Yin Tat Lee,et al.  A Faster Cutting Plane Method and its Implications for Combinatorial and Convex Optimization , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[155]  Steven H. Adachi,et al.  Application of Quantum Annealing to Training of Deep Neural Networks , 2015, ArXiv.

[156]  Ashish Kapoor,et al.  Quantum Inspired Training for Boltzmann Machines , 2015, ArXiv.

[157]  Prasad Raghavendra,et al.  Beating the random assignment on constraint satisfaction problems of bounded degree , 2015, Electron. Colloquium Comput. Complex..

[158]  Anmer Daskin Quantum Principal Component Analysis , 2015 .

[159]  L. Rosasco,et al.  Less is More: Nystr\"om Computational Regularization , 2015 .

[160]  Andrew W. Cross,et al.  Quantum learning robust against noise , 2014, 1407.5088.

[161]  Quoc V. Le,et al.  Adding Gradient Noise Improves Learning for Very Deep Networks , 2015, ArXiv.

[162]  Ashley Montanaro,et al.  Quantum algorithms: an overview , 2015, npj Quantum Information.

[163]  Éva Tardos,et al.  Maximizing the Spread of Influence through a Social Network , 2015, Theory Comput..

[164]  Srinivasan Arunachalam,et al.  On the Robustness of Bucket Brigade Quantum RAM , 2015, TQC.

[165]  Lorenzo Rosasco,et al.  Less is More: Nyström Computational Regularization , 2015, NIPS.

[166]  Andrew M. Childs,et al.  Quantum linear systems algorithm with exponentially improved dependence on precision , 2015 .

[167]  Damian S. Steiger,et al.  Racing in parallel: Quantum versus Classical , 2016 .

[168]  Sergey Ioffe,et al.  Rethinking the Inception Architecture for Computer Vision , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[169]  Krysta Marie Svore,et al.  Quantum Speed-ups for Semidefinite Programming , 2016, ArXiv.

[170]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[171]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[172]  Aram Wettroth Harrow,et al.  Simulated Quantum Annealing Can Be Exponentially Faster Than Classical Simulated Annealing , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[173]  Seth Lloyd,et al.  Quantum algorithms for topological and geometric analysis of data , 2016, Nature Communications.

[174]  M. Benedetti,et al.  Estimation of effective temperatures in quantum annealers for sampling applications: A case study with possible applications in deep learning , 2015, 1510.07611.

[175]  Roger Melko,et al.  Quantum Boltzmann Machine , 2016, 1601.02036.

[176]  M. Schuld,et al.  Prediction by linear regression on a quantum computer , 2016, 1601.07823.

[177]  Rolando D. Somma,et al.  Quantum algorithms for Gibbs sampling and hitting-time estimation , 2016, Quantum Inf. Comput..

[178]  Ashish Kapoor,et al.  Quantum deep learning , 2014, Quantum Inf. Comput..

[179]  Robert Gardner,et al.  Quantum generalisation of feedforward neural networks , 2016, npj Quantum Information.

[180]  M. Benedetti,et al.  Estimation of effective temperatures in a quantum annealer: Towards deep learning applications , 2016 .

[181]  Vore,et al.  Quantum Speed-ups for Semidefinite Programming , 2017 .

[182]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[183]  H. Neven,et al.  Quantum Algorithms for Fixed Qubit Architectures , 2017, 1703.06199.

[184]  Ronald de Wolf,et al.  A Survey of Quantum Learning Theory , 2017, ArXiv.

[185]  Iordanis Kerenidis,et al.  Quantum Recommendation Systems , 2016, ITCS.

[186]  Ronald de Wolf,et al.  Quantum SDP-Solvers: Better Upper and Lower Bounds , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[187]  Ronald de Wolf,et al.  Optimal Quantum Sample Complexity of Learning Algorithms , 2016, CCC.

[188]  Alán Aspuru-Guzik,et al.  Quantum autoencoders for efficient compression of quantum data , 2016, 1612.02806.

[189]  Andrew M. Childs,et al.  Quantum Algorithm for Systems of Linear Equations with Exponentially Improved Dependence on Precision , 2015, SIAM J. Comput..

[190]  L. Wossnig,et al.  Quantum Linear System Algorithm for Dense Matrices. , 2017, Physical review letters.

[191]  Francis Bach,et al.  Submodular functions: from discrete to continuous domains , 2015, Mathematical Programming.

[192]  Iordanis Kerenidis,et al.  Learning with Errors is easy with quantum samples , 2017, Physical Review A.

[193]  Joseph Fitzsimons,et al.  Quantum assisted Gaussian process regression , 2015, Physical Review A.

[194]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.