THE Q/U IMAGING EXPERIMENT INSTRUMENT

The Q/U Imaging ExperimenT (QUIET) is designed to measure polarization in the cosmic microwave background, targeting the imprint of inflationary gravitational waves at large angular scales(∼1°). Between 2008 October and 2010 December, two independent receiver arrays were deployed sequentially on a 1.4 m side-fed Dragonian telescope. The polarimeters that form the focal planes use a compact design based on high electron mobility transistors (HEMTs) that provides simultaneous measurements of the Stokes parameters Q, U, and I in a single module. The 17-element Q-band polarimeter array, with a central frequency of 43.1 GHz, has the best sensitivity (69 μKs1/2) and the lowest instrumental systematic errors ever achieved in this band, contributing to the tensor-to-scalar ratio at r < 0.1. The 84-element W-band polarimeter array has a sensitivity of 87 μKs1/2 at a central frequency of 94.5 GHz. It has the lowest systematic errors to date, contributing at r < 0.01. The two arrays together cover multipoles in the range ℓ ∼ 25–975. These are the largest HEMT-based arrays deployed to date. This article describes the design, calibration, performance, and sources of systematic error of the instrument.

[1]  I. Buder,et al.  SECOND SEASON QUIET OBSERVATIONS: MEASUREMENTS OF THE COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRUM AT 95 GHz , 2012, 1207.5034.

[2]  R. Reeves QUIET Coherent Polarimeter Modules , 2012 .

[3]  I. Buder,et al.  Novel Calibration System with Sparse Wires for CMB Polarization Receivers , 2011 .

[4]  I. Buder,et al.  FIRST SEASON QUIET OBSERVATIONS: MEASUREMENTS OF COSMIC MICROWAVE BACKGROUND POLARIZATION POWER SPECTRA AT 43 GHz IN THE MULTIPOLE RANGE 25 ⩽ ⩽ 475 , 2010, 1012.3191.

[5]  Raul A. Monsalve,et al.  Beam characterization for the QUIET Q-Band instrument using polarized and unpolarized astronomical sources , 2010, Astronomical Telescopes + Instrumentation.

[6]  Kieran Cleary,et al.  Coherent polarimeter modules for the QUIET experiment , 2010, Astronomical Telescopes + Instrumentation.

[7]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: PLANETS AND CELESTIAL CALIBRATION SOURCES , 2010, 1001.4731.

[8]  J. Aumont,et al.  Measurement of the Crab nebula polarization at 90 GHz as a calibrator for CMB experiments , 2009, 0912.1751.

[9]  P. A. R. Ade,et al.  CHARACTERIZATION OF THE BICEP TELESCOPE FOR HIGH-PRECISION COSMIC MICROWAVE BACKGROUND POLARIMETRY , 2009, 0906.4069.

[10]  K. Vanderlinde,et al.  Digital control and data acquisition system for the QUIET experiment , 2007 .

[11]  Bradley R. Johnson,et al.  Systematic errors in cosmic microwave background polarization measurements , 2006, astro-ph/0610361.

[12]  Catherine J. Cesarsky,et al.  The Atacama Pathfinder EXperiment (APEX) : a new submillimeter facility for southern skies , 2006 .

[13]  S. Weinreb,et al.  Planar Polarimetry Receivers for Large Imaging Arrays at Q-band , 2006, 2006 IEEE MTT-S International Microwave Symposium Digest.

[14]  Michael Seiffert,et al.  Millimeter-wave MMIC cameras and the QUIET experiment , 2004, SPIE Astronomical Telescopes + Instrumentation.

[15]  J. E. Ruhl,et al.  COMPASS: An Upper Limit on Cosmic Microwave Background Polarization at an Angular Scale of 20' , 2004 .

[16]  P. Farese,et al.  COMPASS: An Upper Limit on CMB Polarization at an Angular Scale of 20 arc minutes , 2003, astro-ph/0308309.

[17]  M. Bersanelli,et al.  Offset balancing in pseudo-correlation radiometers for CMB measurements , 2003, astro-ph/0307558.

[18]  Edward J. Wollack,et al.  First Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: On-Orbit Radiometer Characterization , 2003, astro-ph/0302224.

[19]  Edward J. Wollack,et al.  The Optical Design and Characterization of the Microwave Anisotropy Probe , 2003, astro-ph/0301160.

[20]  J. M. Kovac,et al.  Measurement of polarization with the Degree Angular Scale Interferometer , 2002, Nature.

[21]  J. McMahon,et al.  Calibrating CMB polarization telescopes , 2002 .

[22]  L. Piccirillo,et al.  An Instrument for Investigating the Large Angular Scale Polarization of the Cosmic Microwave Background , 2001, astro-ph/0111276.

[23]  S. Padin,et al.  The Cosmic Background Imager , 2000, astro-ph/0012212.

[24]  A. Liddle,et al.  Cosmological Inflation and Large-Scale Structure: BUILDING AND TESTING MODELS OF INFLATION , 2000 .

[25]  Simon J. E. Radford,et al.  Atmospheric conditions at a site for submillimeter-wavelength astronomy , 1998, Astronomical Telescopes and Instrumentation.

[26]  Joshua O. Gundersen,et al.  The advanced cosmic microwave explorer - A millimeter-wave telescope and stabilized platform , 1993 .

[27]  D. Hoppe Modal analysis applied to circular, rectangular, and coaxial waveguides , 1988 .

[28]  A. Olver,et al.  Corrugated Horns for Microwave Antennas , 1984 .

[29]  C. Dragone,et al.  Offset multireflector antennas with perfect pattern symmetry and polarization discrimination , 1978, The Bell System Technical Journal.

[30]  J. H. Davis,et al.  Planetary brightness temperature measurements at 8.6 mm and 3.1 mm wavelengths , 1973 .

[31]  A. Clark,et al.  Electrical resistivity of some engineering alloys at low temperatures , 1970 .

[32]  M. Halpern,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP1) Observations: Galactic Foreground Emission , 2008 .

[33]  D. J. Hoppe,et al.  CWGSCAT - SCATTERING MATRIX PROGRAM FOR CIRCULAR WAVEGUIDE JUNCTIONS , 1994 .