Pericytes in the renal vasculature: roles in health and disease

[1]  J. Mullins,et al.  The Efficacy of Puromycin and Adriamycin for Induction of Glomerular Failure in Larval Zebrafish Validated by an Assay of Glomerular Permeability Dynamics , 2018, Zebrafish.

[2]  P. Lachmann,et al.  Persistent and inducible neogenesis repopulates progenitor renin lineage cells in the kidney. , 2017, Kidney international.

[3]  D. Attwell,et al.  Capillary pericytes mediate coronary no-reflow after myocardial ischaemia , 2017, eLife.

[4]  M. Delgado-Rodríguez,et al.  Systematic review and meta-analysis. , 2017, Medicina intensiva.

[5]  J. R. Smith,et al.  αv integrins on mesenchymal cells regulate skeletal and cardiac muscle fibrosis , 2017, Nature Communications.

[6]  James A. Gagnon,et al.  Simultaneous single-cell profiling of lineages and cell types in the vertebrate brain by scGESTALT , 2017, bioRxiv.

[7]  J. Davies,et al.  Refuting the hypothesis that semaphorin‐3f/neuropilin‐2 exclude blood vessels from the cap mesenchyme in the developing kidney , 2017, Developmental dynamics : an official publication of the American Association of Anatomists.

[8]  A. Goodship,et al.  The Wnt5a Receptor, Receptor Tyrosine Kinase‐Like Orphan Receptor 2, Is a Predictive Cell Surface Marker of Human Mesenchymal Stem Cells with an Enhanced Capacity for Chondrogenic Differentiation , 2017, Stem cells.

[9]  Ihor V. Yosypiv,et al.  Foxd1 is an upstream regulator of the renin–angiotensin system during metanephric kidney development , 2017, Pediatric Research.

[10]  S. Shi,et al.  Single-cell RNA-sequence analysis of mouse glomerular mesangial cells uncovers mesangial cell essential genes. , 2017, Kidney international.

[11]  J. Girkin,et al.  Precise spatio-temporal control of rapid optogenetic cell ablation with mem-KillerRed in Zebrafish , 2017, Scientific Reports.

[12]  A. James,et al.  Early Immunomodulatory Effects of Implanted Human Perivascular Stromal Cells During Bone Formation. , 2017, Tissue engineering. Part A.

[13]  J. Davies,et al.  Cycles of vascular plexus formation within the nephrogenic zone of the developing mouse kidney , 2017, Scientific Reports.

[14]  L. Forni,et al.  Renal recovery after acute kidney injury , 2017, Intensive Care Medicine.

[15]  K. Livak,et al.  Transcriptional Networks in Single Perivascular Cells Sorted from Human Adipose Tissue Reveal a Hierarchy of Mesenchymal Stem Cells , 2017, Stem cells.

[16]  H. Christian,et al.  Zebrafish mesonephric renin cells are functionally conserved and comprise two distinct morphological populations. , 2017, American journal of physiology. Renal physiology.

[17]  E. Masliah,et al.  Pericytes of Multiple Organs Do Not Behave as Mesenchymal Stem Cells In Vivo. , 2017, Cell stem cell.

[18]  R. Kramann,et al.  Gli1+ Pericyte Loss Induces Capillary Rarefaction and Proximal Tubular Injury. , 2017, Journal of the American Society of Nephrology : JASN.

[19]  J. Hughes,et al.  Renal Aging: Causes and Consequences. , 2017, Journal of the American Society of Nephrology : JASN.

[20]  J. Lambris,et al.  Pericytes and immune cells contribute to complement activation in tubulointerstitial fibrosis. , 2017, American journal of physiology. Renal physiology.

[21]  K. Guckian,et al.  Pericyte MyD88 and IRAK4 control inflammatory and fibrotic responses to tissue injury , 2017, The Journal of clinical investigation.

[22]  I. Smyth,et al.  The contribution of branching morphogenesis to kidney development and disease , 2016, Nature Reviews Nephrology.

[23]  H. Christian,et al.  Human kidney pericytes produce renin , 2016, Kidney international.

[24]  Hiroshi Iwata,et al.  Adventitial MSC-like Cells Are Progenitors of Vascular Smooth Muscle Cells and Drive Vascular Calcification in Chronic Kidney Disease. , 2016, Cell stem cell.

[25]  B. Knebelmann,et al.  Case report and literature review , 2016, Medicine.

[26]  T. Rabelink,et al.  Tissue-Specific Progenitor and Stem Cells Clinical-Grade Isolated Human Kidney Perivascular Stromal Cells as anOrganotypic Cell Source for Kidney Regenerative Medicine , 2016 .

[27]  D. Rybin,et al.  Renal Interstitial Fibrosis: An Imperfect Predictor of Kidney Disease Progression in Some Patient Cohorts , 2016, American Journal of Nephrology.

[28]  J. Myllyharju,et al.  CD146(+) cells are essential for kidney vasculature development. , 2016, Kidney international.

[29]  J. Duffield,et al.  Maintenance of vascular integrity by pericytes is essential for normal kidney function. , 2016, American journal of physiology. Renal physiology.

[30]  T. Rabelink,et al.  Silencing of microRNA-132 reduces renal fibrosis by selectively inhibiting myofibroblast proliferation. , 2016, Kidney international.

[31]  Youhua Liu,et al.  Sustained Activation of Wnt/β-Catenin Signaling Drives AKI to CKD Progression. , 2016, Journal of the American Society of Nephrology : JASN.

[32]  M. Breyer,et al.  The next generation of therapeutics for chronic kidney disease , 2016, Nature Reviews Drug Discovery.

[33]  C. Zeng,et al.  Ultrastructural characterization of the pronephric glomerulus development in zebrafish , 2016, Journal of morphology.

[34]  T. Pallone,et al.  Descending Vasa Recta Endothelial Membrane Potential Response Requires Pericyte Communication , 2016, PloS one.

[35]  R. Kelsh,et al.  Clarification of mural cell coverage of vascular endothelial cells by live imaging of zebrafish , 2016, Development.

[36]  H. Kleinman,et al.  Imaging of Angiotropism/Vascular Co-Option in a Murine Model of Brain Melanoma: Implications for Melanoma Progression along Extravascular Pathways , 2016, Scientific Reports.

[37]  A. Simpson,et al.  Adipose derived pericytes rescue fractures from a failure of healing – non-union , 2016, Scientific Reports.

[38]  R. Kramann,et al.  Paracrine Wnt1 Drives Interstitial Fibrosis without Inflammation by Tubulointerstitial Cross-Talk. , 2016, Journal of the American Society of Nephrology : JASN.

[39]  I. Murray,et al.  Q&A: Mesenchymal stem cells — where do they come from and is it important? , 2015, BMC Biology.

[40]  J. D. de Fijter,et al.  Safety of allogeneic bone marrow derived mesenchymal stromal cell therapy in renal transplant recipients: the neptune study , 2015, Journal of Translational Medicine.

[41]  R. Nishinakamura,et al.  Sall1 in renal stromal progenitors non-cell autonomously restricts the excessive expansion of nephron progenitors , 2015, Scientific Reports.

[42]  I. Weissman,et al.  Pericytes are progenitors for coronary artery smooth muscle , 2015, eLife.

[43]  S. Turley,et al.  Immunological hallmarks of stromal cells in the tumour microenvironment , 2015, Nature Reviews Immunology.

[44]  B. Péault Peril in perishing pericytes. , 2015, Journal of the National Cancer Institute.

[45]  J. Mullins,et al.  Renin expression in developing zebrafish is associated with angiogenesis and requires the Notch pathway and endothelium. , 2015, American journal of physiology. Renal physiology.

[46]  Yaopan Mao,et al.  Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching , 2015, Development.

[47]  B. Blencowe,et al.  Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool , 2015, Development.

[48]  S. Dry,et al.  Pericyte Antigens in Perivascular Soft Tissue Tumors , 2015, International journal of surgical pathology.

[49]  P. Rabinovitch,et al.  Interstitial pericytes decrease in aged mouse kidneys , 2015, Aging.

[50]  D. Stolz,et al.  Unwrapping the origins and roles of the renal endothelium , 2015, Pediatric Nephrology.

[51]  Kyung Lee,et al.  HIPK2 is a new drug target for anti-fibrosis therapy in kidney disease , 2015, Front. Physiol..

[52]  S. Sarin,et al.  Stromally Expressed β-Catenin Modulates Wnt9b Signaling in the Ureteric Epithelium , 2015, PloS one.

[53]  Tamily A Weissman,et al.  Brainbow: New Resources and Emerging Biological Applications for Multicolor Genetic Labeling and Analysis , 2015, Genetics.

[54]  C. Sigmund,et al.  The earliest metanephric arteriolar progenitors and their role in kidney vascular development. , 2015, American journal of physiology. Regulatory, integrative and comparative physiology.

[55]  B. Ebert,et al.  Perivascular Gli1+ progenitors are key contributors to injury-induced organ fibrosis. , 2015, Cell stem cell.

[56]  D. Herzlinger,et al.  Patterning the renal vascular bed. , 2014, Seminars in cell & developmental biology.

[57]  G. Xiang,et al.  Human Myocardial Pericytes: Multipotent Mesodermal Precursors Exhibiting Cardiac Specificity , 2014, Stem cells.

[58]  A. McMahon,et al.  Identification of a Multipotent Self-Renewing Stromal Progenitor Population during Mammalian Kidney Organogenesis , 2014, Stem cell reports.

[59]  J. Duffield,et al.  The Role of Pericyte Detachment in Vascular Rarefaction , 2014, Journal of Vascular Research.

[60]  P. Kroeger,et al.  Using zebrafish to study podocyte genesis during kidney development and regeneration , 2014, Genesis.

[61]  A. McMahon,et al.  Translational profiles of medullary myofibroblasts during kidney fibrosis. , 2014, Journal of the American Society of Nephrology : JASN.

[62]  L. Lerman,et al.  Mesenchymal stem cell treatment for chronic renal failure , 2014, Stem Cell Research & Therapy.

[63]  M. Moeller,et al.  Mechanisms of epithelial repair and regeneration after acute kidney injury. , 2014, Seminars in nephrology.

[64]  N. Rosenblum,et al.  Developmental origins and functions of stromal cells in the normal and diseased mammalian kidney , 2014, Developmental dynamics : an official publication of the American Association of Anatomists.

[65]  Jun Chen,et al.  Endostatin and kidney fibrosis in aging: a case for antagonistic pleiotropy? , 2014, American journal of physiology. Heart and circulatory physiology.

[66]  K. Sharma,et al.  Novel targets of antifibrotic and anti-inflammatory treatment in CKD , 2014, Nature Reviews Nephrology.

[67]  N. Hamilton,et al.  Global quantification of tissue dynamics in the developing mouse kidney. , 2014, Developmental cell.

[68]  T. Pallone,et al.  Descending vasa recta endothelial cells and pericytes form mural syncytia. , 2014, American journal of physiology. Renal physiology.

[69]  J. Sowers,et al.  Salt Loading Promotes Kidney Injury via Fibrosis in Young Female Ren2 Rats , 2014, Cardiorenal Medicine.

[70]  M. Santoro,et al.  An α-Smooth Muscle Actin (acta2/αsma) Zebrafish Transgenic Line Marking Vascular Mural Cells and Visceral Smooth Muscle Cells , 2014, PloS one.

[71]  O. Klein,et al.  Secretion of shh by a neurovascular bundle niche supports mesenchymal stem cell homeostasis in the adult mouse incisor. , 2014, Cell stem cell.

[72]  S. Sims-Lucas,et al.  Ablation of the Renal Stroma Defines Its Critical Role in Nephron Progenitor and Vasculature Patterning , 2014, PloS one.

[73]  R. A. Gomez,et al.  RBP-J in FOXD1+ renal stromal progenitors is crucial for the proper development and assembly of the kidney vasculature and glomerular mesangial cells. , 2014, American journal of physiology. Renal physiology.

[74]  B. Smeets,et al.  Origin of regenerating tubular cells after acute kidney injury , 2014, Proceedings of the National Academy of Sciences.

[75]  R. Iozzo,et al.  FOXD1 promotes nephron progenitor differentiation by repressing decorin in the embryonic kidney , 2014, Development.

[76]  E. Batourina,et al.  Stromal Protein Ecm1 Regulates Ureteric Bud Patterning and Branching , 2013, PloS one.

[77]  C. Peppiatt-Wildman,et al.  Sympathetic nerve-derived ATP regulates renal medullary vasa recta diameter via pericyte cells: a role for regulating medullary blood flow? , 2013, Front. Physiol..

[78]  L. Lum,et al.  Stromal-epithelial crosstalk regulates kidney progenitor cell differentiation , 2013, Nature Cell Biology.

[79]  A. Kispert,et al.  Tbx18 expression demarcates multipotent precursor populations in the developing urogenital system but is exclusively required within the ureteric mesenchymal lineage to suppress a renal stromal fate. , 2013, Developmental biology.

[80]  L. Lerman,et al.  Mesenchymal Stem Cells Improve Medullary Inflammation and Fibrosis after Revascularization of Swine Atherosclerotic Renal Artery Stenosis , 2013, PloS one.

[81]  T. Weissman,et al.  Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish , 2013, Development.

[82]  R. Kalluri,et al.  Origin and function of myofibroblasts in kidney fibrosis , 2013, Nature Medicine.

[83]  E. Prochownik,et al.  Endothelial Progenitors Exist within the Kidney and Lung Mesenchyme , 2013, PloS one.

[84]  J. Mullins,et al.  Erratum to: Renal pericytes: multifunctional cells of the kidneys , 2013, Pflügers Archiv - European Journal of Physiology.

[85]  J. Mullins,et al.  Renal pericytes: multifunctional cells of the kidneys , 2013 .

[86]  G. Crooks,et al.  Perivascular support of human hematopoietic stem/progenitor cells. , 2013, Blood.

[87]  P. Boor,et al.  Late angiotensin II receptor blockade in progressive rat mesangioproliferative glomerulonephritis: new insights into mechanisms , 2013, The Journal of pathology.

[88]  R. A. Gomez,et al.  Pericytes synthesize renin. , 2013, World journal of nephrology.

[89]  K. Tobita,et al.  Human Pericytes for Ischemic Heart Repair , 2013, Stem cells.

[90]  J. D. de Fijter,et al.  Autologous Bone Marrow‐Derived Mesenchymal Stromal Cells for the Treatment of Allograft Rejection After Renal Transplantation: Results of a Phase I Study , 2013, Stem cells translational medicine.

[91]  H. Lu,et al.  A zebrafish model of conditional targeted podocyte ablation and regeneration , 2013, Kidney international.

[92]  C. Peppiatt-Wildman The evolving role of renal pericytes , 2013, Current opinion in nephrology and hypertension.

[93]  C. Peppiatt-Wildman,et al.  Renal pericytes: regulators of medullary blood flow , 2012, Acta physiologica.

[94]  F. Hildebrandt,et al.  Inducible podocyte injury and proteinuria in transgenic zebrafish. , 2012, Journal of the American Society of Nephrology : JASN.

[95]  M. Corselli,et al.  The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. , 2012, Stem cells and development.

[96]  D. Zanetta,et al.  Long-Term Follow-Up of Patients after Acute Kidney Injury: Patterns of Renal Functional Recovery , 2012, PloS one.

[97]  L. Lerman,et al.  Adipose Tissue‐Derived Mesenchymal Stem Cells Improve Revascularization Outcomes to Restore Renal Function in Swine Atherosclerotic Renal Artery Stenosis , 2012, Stem cells.

[98]  A. McMahon,et al.  Hedgehog-Gli pathway activation during kidney fibrosis. , 2012, The American journal of pathology.

[99]  R. Unwin,et al.  Inhibition of medullary prostaglandin E2 (PGE2) by non‐steroidal anti‐inflammatory drugs (NSAIDs) adversely affects medullary blood flow , 2012 .

[100]  E. Mohammadi,et al.  Barriers and facilitators related to the implementation of a physiological track and trigger system: A systematic review of the qualitative evidence , 2017, International journal for quality in health care : journal of the International Society for Quality in Health Care.

[101]  Zainab N. Khan,et al.  Pericyte depletion results in hypoxia-associated epithelial-to-mesenchymal transition and metastasis mediated by met signaling pathway. , 2012, Cancer cell.

[102]  B. Aronow,et al.  Genes that confer the identity of the renin cell. , 2011, Journal of the American Society of Nephrology : JASN.

[103]  J. Duffield,et al.  Platelet-derived growth factor receptor signaling activates pericyte-myofibroblast transition in obstructive and post-ischemic kidney fibrosis. , 2011, Kidney international.

[104]  R. A. Gomez,et al.  Development of the renal arterioles. , 2011, Journal of the American Society of Nephrology : JASN.

[105]  H. Ibrahim,et al.  Long-term outcomes of kidney donors , 2011, Current opinion in nephrology and hypertension.

[106]  S. Antonini,et al.  Pericytes resident in postnatal skeletal muscle differentiate into muscle fibres and generate satellite cells. , 2011, Nature communications.

[107]  H. Okano,et al.  Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice. , 2011, The Journal of clinical investigation.

[108]  C. Betsholtz,et al.  Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. , 2011, Developmental cell.

[109]  E. Crivellato,et al.  The role of pericytes in angiogenesis. , 2011, The International journal of developmental biology.

[110]  H. Ibrahim,et al.  Long-term outcomes of kidney donors , 2011, Arab journal of urology.

[111]  Spike Clay,et al.  The induction of macrophage hemeoxygenase-1 is protective during acute kidney injury in aging mice. , 2011, Kidney international.

[112]  L. Lum,et al.  Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development , 2011, Development.

[113]  Benjamin R. Lichman,et al.  Identification of adult nephron progenitors capable of kidney regeneration in zebrafish , 2011, Nature.

[114]  C. Kuo,et al.  Targeting endothelium-pericyte cross talk by inhibiting VEGF receptor signaling attenuates kidney microvascular rarefaction and fibrosis. , 2011, The American journal of pathology.

[115]  L. Zon,et al.  Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish , 2011, Development.

[116]  Bengt R. Johansson,et al.  Pericytes regulate the blood–brain barrier , 2010, Nature.

[117]  S. Lukyanov,et al.  Optogenetic in vivo cell manipulation in KillerRed-expressing zebrafish transgenics , 2010, BMC Developmental Biology.

[118]  C. Englert,et al.  Characterization of mesonephric development and regeneration using transgenic zebrafish. , 2010, American journal of physiology. Renal physiology.

[119]  K. Anderson,et al.  Results of a phase I study of RAD001 in combination with lenalidomide in patients with relapsed or refractory multiple myeloma. , 2010 .

[120]  G. Remuzzi,et al.  Life‐Sparing Effect of Human Cord Blood‐Mesenchymal Stem Cells in Experimental Acute Kidney Injury , 2010, Stem cells.

[121]  B. Harfe,et al.  The microRNA-processing enzyme dicer maintains juxtaglomerular cells. , 2010, Journal of the American Society of Nephrology : JASN.

[122]  E. Batourina,et al.  Non-cell-autonomous retinoid signaling is crucial for renal development , 2010, Development.

[123]  Fernand,et al.  The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. , 2009, Kidney international.

[124]  D. Stainier,et al.  Characterization of vascular mural cells during zebrafish development , 2009, Mechanisms of Development.

[125]  B. Janssen,et al.  Renal medullary effects of transient prehypertensive treatment in young spontaneously hypertensive rats , 2009, Acta physiologica.

[126]  D. Herzlinger,et al.  Paraxial mesoderm contributes stromal cells to the developing kidney. , 2009, Developmental biology.

[127]  Jinkuk Kim,et al.  The role of mesenchymal stem cells in the functional improvement of chronic renal failure. , 2009, Stem cells and development.

[128]  Raghu Kalluri,et al.  Fibroblasts in kidney fibrosis emerge via endothelial-to-mesenchymal transition. , 2008, Journal of the American Society of Nephrology : JASN.

[129]  D. Brenner,et al.  Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. , 2008, The American journal of pathology.

[130]  R. Hammer,et al.  White Fat Progenitor Cells Reside in the Adipose Vasculature , 2008, Science.

[131]  S. Badylak,et al.  A perivascular origin for mesenchymal stem cells in multiple human organs. , 2008, Cell stem cell.

[132]  N. Nardi,et al.  In Search of the In Vivo Identity of Mesenchymal Stem Cells , 2008, Stem cells.

[133]  A. McMahon,et al.  Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development. , 2008, Cell stem cell.

[134]  M. Tinetti,et al.  Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. , 2008, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[135]  R. Wingert,et al.  The zebrafish pronephros: a model to study nephron segmentation. , 2008, Kidney International.

[136]  W. Wier,et al.  Membrane current oscillations in descending vasa recta pericytes. , 2008, American journal of physiology. Renal physiology.

[137]  L. Hofmann,et al.  Reninoma: case report and literature review , 2008, Journal of hypertension.

[138]  W. Arap,et al.  A Population of Multipotent CD34-Positive Adipose Stromal Cells Share Pericyte and Mesenchymal Surface Markers, Reside in a Periendothelial Location, and Stabilize Endothelial Networks , 2008, Circulation research.

[139]  C. Gargett,et al.  Co-expression of two perivascular cell markers isolates mesenchymal stem-like cells from human endometrium. , 2007, Human reproduction.

[140]  S. Atlas The Renin-Angiotensin Aldosterone System: Pathophysiological Role and Pharmacologic Inhibition , 2007, Journal of managed care pharmacy : JMCP.

[141]  L. Kiemeney,et al.  Age- and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. , 2007, Kidney international.

[142]  K. Dunn,et al.  Live‐Animal Imaging of Renal Function by Multiphoton Microscopy , 2007, Current protocols in cytometry.

[143]  Ryan M. Anderson,et al.  Conditional targeted cell ablation in zebrafish: A new tool for regeneration studies , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[144]  R. Hiramatsu,et al.  Redundant roles of Sox17 and Sox18 in postnatal angiogenesis in mice , 2006, Journal of Cell Science.

[145]  A. Garg,et al.  Chronic kidney disease and mortality risk: a systematic review. , 2006, Journal of the American Society of Nephrology : JASN.

[146]  R. Lenclen,et al.  Foetal kidney maldevelopment in maternal use of angiotensin II type I receptor antagonists , 2006, Pediatric Nephrology.

[147]  M. Taglienti,et al.  Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa , 2005, Development.

[148]  Richard J. Johnson,et al.  Tubulointerstitial damage and progression of renal failure. , 2005, Kidney international. Supplement.

[149]  J. Barnes,et al.  Origin of interstitial fibroblasts in an accelerated model of angiotensin II-induced renal fibrosis. , 2005, The American journal of pathology.

[150]  I. Drummond,et al.  Organization of the pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain protein Mosaic eyes. , 2005, Developmental biology.

[151]  Karen A. Griffin,et al.  Pathophysiology of Hypertensive Renal Damage: Implications for Therapy , 2004, Hypertension.

[152]  O. Smithies,et al.  Renin cells are precursors for multiple cell types that switch to the renin phenotype when homeostasis is threatened. , 2004, Developmental cell.

[153]  S. Glenn,et al.  Genomic characterization and expression analysis of the first nonmammalian renin genes from zebrafish and pufferfish. , 2004, Physiological genomics.

[154]  U. Landegren,et al.  Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. , 2003, Genes & development.

[155]  I. Drummond Making a zebrafish kidney: a tale of two tubes. , 2003, Trends in cell biology.

[156]  R. Jamison,et al.  Countercurrent exchange in the renal medulla. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[157]  L. Truong,et al.  A role for uric acid in the progression of renal disease. , 2002, Journal of the American Society of Nephrology : JASN.

[158]  Takefumi Mori,et al.  Tubulovascular Nitric Oxide Crosstalk: Buffering of Angiotensin II–Induced Medullary Vasoconstriction , 2002, Circulation research.

[159]  L. Truong,et al.  Role of the microvascular endothelium in progressive renal disease. , 2002, Journal of the American Society of Nephrology : JASN.

[160]  D. Goldowitz,et al.  The Renal Glomerulus and Vasculature in ‘Aggregation’ Chimeric Mice , 2002, Nephron.

[161]  S. Harper,et al.  Human podocytes express angiopoietin 1, a potential regulator of glomerular vascular endothelial growth factor. , 2002, Journal of the American Society of Nephrology : JASN.

[162]  D. Abrahamson,et al.  Embryonic origin and lineage of juxtaglomerular cells. , 2001, American journal of physiology. Renal physiology.

[163]  Y. G. Kim,et al.  Impaired angiogenesis in the aging kidney: vascular endothelial growth factor and thrombospondin-1 in renal disease. , 2001, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[164]  G. Weinmaster,et al.  Defects in development of the kidney, heart and eye vasculature in mice homozygous for a hypomorphic Notch2 mutation. , 2001, Development.

[165]  B. Weinstein,et al.  The vascular anatomy of the developing zebrafish: an atlas of embryonic and early larval development. , 2001, Developmental biology.

[166]  H. Enzan,et al.  An immunohistochemical study of developing glomeruli in human fetal kidneys. , 2000, Kidney international.

[167]  E. Batourina,et al.  Stromal cells mediate retinoid-dependent functions essential for renal development. , 1999, Development.

[168]  H. S. Kim,et al.  Reduced growth, abnormal kidney structure, and type 2 (AT2) angiotensin receptor-mediated blood pressure regulation in mice lacking both AT1A and AT1B receptors for angiotensin II. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[169]  A. Schier,et al.  Early development of the zebrafish pronephros and analysis of mutations affecting pronephric function. , 1998, Development.

[170]  P. S. St. John,et al.  Origins and formation of microvasculature in the developing kidney. , 1998, Kidney international. Supplement.

[171]  C. Betsholtz,et al.  Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. , 1998, Development.

[172]  P. S. St. John,et al.  Direct visualization of renal vascular morphogenesis in Flk1 heterozygous mutant mice. , 1998, American journal of physiology. Renal physiology.

[173]  W. Couser,et al.  Extraglomerular origin of the mesangial cell after injury. A new role of the juxtaglomerular apparatus. , 1997, The Journal of clinical investigation.

[174]  P. S. St. John,et al.  Evidence that embryonic kidney cells expressing flk-1 are intrinsic, vasculogenic angioblasts. , 1996, The American journal of physiology.

[175]  E. Lai,et al.  Essential role of stromal mesenchyme in kidney morphogenesis revealed by targeted disruption of Winged Helix transcription factor BF-2. , 1996, Genes & development.

[176]  D. Tucker,et al.  Endogenous origin of glomerular endothelial and mesangial cells in grafts of embryonic kidneys. , 1996, The American journal of physiology.

[177]  K. Alitalo,et al.  Vascularization of the mouse embryo: A study of flk‐1, tek, tie, and vascular endothelial growth factor expression during development , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[178]  J. Hughes,et al.  Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. , 1994, The Journal of clinical investigation.

[179]  J. Rossant,et al.  flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. , 1993, Development.

[180]  R. Wiggins,et al.  Vascular adventitial cell expression of collagen I messenger ribonucleic acid in anti-glomerular basement membrane antibody-induced crescentic nephritis in the rabbit. A cellular source for interstitial collagen synthesis in inflammatory renal disease. , 1993, Laboratory investigation; a journal of technical methods and pathology.

[181]  K. Nath,et al.  Tubulointerstitial changes as a major determinant in the progression of renal damage. , 1992, American journal of kidney diseases : the official journal of the National Kidney Foundation.

[182]  T F Bendtsen,et al.  Glomerular number and size in relation to age, kidney weight, and body surface in normal man , 1992, The Anatomical record.

[183]  M. Brezis,et al.  Effects of adenosine on intrarenal oxygenation. , 1991, The American journal of physiology.

[184]  F. Fuchs,et al.  Force, length, and Ca(2+)-troponin C affinity in skeletal muscle. , 1991, The American journal of physiology.

[185]  E. Neilson,et al.  Mechanisms of tubulointerstitial fibrosis. , 2010, Journal of the American Society of Nephrology : JASN.

[186]  A. Gown,et al.  Expression of smooth muscle cell phenotype by rat mesangial cells in immune complex nephritis. Alpha-smooth muscle actin is a marker of mesangial cell proliferation. , 1991, The Journal of clinical investigation.

[187]  J. Bonventre,et al.  Tubular organization and vascular-tubular relations in the dog kidney. , 1975, The American journal of physiology.

[188]  B. Brenner,et al.  Dynamics of glomerular ultrafiltration in the rat. 3. Hemodynamics and autoregulation. , 1972, The American journal of physiology.

[189]  B. Brenner,et al.  The dynamics of glomerular ultrafiltration in the rat. , 1971, The Journal of clinical investigation.

[190]  E. L. Potter,et al.  DEVELOPMENT OF HUMAN KIDNEY AS SHOWN BY MICRODISSECTION. I. PREPARATION OF TISSUE WITH REASONS FOR POSSIBLE MISINTERPRETATION OF OBSERVATIONS. , 1963, Archives of pathology.

[191]  T. A. Al Hussain,et al.  Pathophysiology of IgA Nephropathy. , 2017, Advances in anatomic pathology.

[192]  A. Rule,et al.  The Substantial Loss of Nephrons in Healthy Human Kidneys with Aging. , 2017, Journal of the American Society of Nephrology : JASN.

[193]  Mustafa Saad,et al.  Implications for Therapy , 2016 .

[194]  P. Lachmann,et al.  Renin lineage cells repopulate the glomerular mesangium after injury. , 2015, Journal of the American Society of Nephrology : JASN.

[195]  Stefańska Am,et al.  Renal pericytes: multifunctional cells of the kidneys , 2013, Pflügers Archiv - European Journal of Physiology.

[196]  E. Inscho,et al.  The Renal Microcirculation , 2011 .

[197]  A. McMahon,et al.  Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. , 2010, The American journal of pathology.

[198]  F. Rodríguez-Castellanos,et al.  [Renal length measured by ultrasound in adult mexican population]. , 2009, Nefrologia : publicacion oficial de la Sociedad Espanola Nefrologia.

[199]  Konstantin A Lukyanov,et al.  A genetically encoded photosensitizer , 2006, Nature Biotechnology.

[200]  W. Kriz,et al.  The structural organization of the kidney ofTyphlonectes compressicaudus (Amphibia, Gymnophiona) , 2004, Anatomy and Embryology.

[201]  A. Mark,et al.  New Insights Into Mechanisms , 2004 .

[202]  M. Mohamed Effect of aging on renal function and disease , 2002 .

[203]  成瀬 桂史 An immunohistochemical study of developing glomeruli in human fetal kidneys , 2000 .

[204]  R. A. Gomez,et al.  Renin-expressing cells are associated with branching of the developing kidney vasculature. , 1998, Journal of the American Society of Nephrology : JASN.

[205]  J F Pedersen,et al.  Kidney dimensions at sonography: correlation with age, sex, and habitus in 665 adult volunteers. , 1993, AJR. American journal of roentgenology.

[206]  D. Sims,et al.  The pericyte--a review. , 1986, Tissue & cell.

[207]  J. S. Fong,et al.  Kidney glomeruli. , 1974, Methods in enzymology.

[208]  J. Oliver Nephrons and kidneys : a quantitative study of developmental and evolutionary mammalian renal architectonics , 1968 .

[209]  F. Welch,et al.  Causes and Consequences , 2017, Nature.