Energy- and cost-efficient NaCl-assisted synthesis of MAX-phase Ti3AlC2 at lower temperature

[1]  S. F. Santos,et al.  Synthesis, structure, properties and applications of MXenes: Current status and perspectives , 2019, Ceramics International.

[2]  S. Dou,et al.  Construction of Structure-Tunable Si@Void@C Anode Materials for Lithium-Ion Batteries through Controlling the Growth Kinetics of Resin. , 2019, ACS nano.

[3]  Pengjian Zuo,et al.  A general way to fabricate transition metal dichalcogenide/oxide-sandwiched MXene nanosheets as flexible film anodes for high-performance lithium storage , 2019, Sustainable Energy & Fuels.

[4]  Chengwei Wang,et al.  Hierarchical architecture of Ti3C2@PDA/NiCo2S4 composite electrode as high-performance supercapacitors , 2019, Ceramics International.

[5]  Yue Wu,et al.  2D Early Transition Metal Carbides (MXenes) for Catalysis. , 2019, Small.

[6]  Zhi Wei Seh,et al.  Theory-guided materials design: two-dimensional MXenes in electro- and photocatalysis , 2019, Nanoscale Horizons.

[7]  Zhiyan Zhang,et al.  Intercalation and delamination behavior of Ti3C2Txand MnO2/Ti3C2Tx/RGO flexible fibers with high volumetric capacitance , 2019, Journal of Materials Chemistry A.

[8]  M. Malaki,et al.  MXenes and ultrasonication , 2019, Journal of Materials Chemistry A.

[9]  Nian Liu,et al.  A safe and fast-charging lithium-ion battery anode using MXene supported Li3VO4 , 2019, Journal of Materials Chemistry A.

[10]  Biao Zhang,et al.  Fluoride-free synthesis and microstructure evolution of novel two-dimensional Ti3C2(OH)2 nanoribbons as high-performance anode materials for lithium-ion batteries , 2019, Ceramics International.

[11]  Xing Hu,et al.  Correction: A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors , 2019, Journal of Materials Chemistry A.

[12]  J. Coleman,et al.  Additive-free MXene inks and direct printing of micro-supercapacitors , 2019, Nature Communications.

[13]  X. Bao,et al.  Ionic liquid pre-intercalated MXene films for ionogel-based flexible micro-supercapacitors with high volumetric energy density , 2019, Journal of Materials Chemistry A.

[14]  O. Guillon,et al.  Molten salt shielded synthesis of oxidation prone materials in air , 2019, Nature Materials.

[15]  Xing Hu,et al.  A facile method for synthesizing CuS decorated Ti3C2 MXene with enhanced performance for asymmetric supercapacitors , 2019, Journal of Materials Chemistry A.

[16]  Zhubing Xiao,et al.  Ultrafine Ti3C2 MXene Nanodots-Interspersed Nanosheet for High-Energy-Density Lithium-Sulfur Batteries. , 2019, ACS nano.

[17]  Guoxiu Wang,et al.  Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium–sulfur batteries , 2019, Journal of Materials Chemistry A.

[18]  L. Vlček,et al.  Influences from solvents on charge storage in titanium carbide MXenes , 2019, Nature Energy.

[19]  G. Yin,et al.  Pt decorated Ti3C2 MXene for enhanced methanol oxidation reaction , 2019, Ceramics International.

[20]  C. Chen,et al.  MXene (Ti3C2) Vacancy-Confined Single-Atom Catalyst for Efficient Functionalization of CO2. , 2019, Journal of the American Chemical Society.

[21]  Guihua Yu,et al.  A Wearable Transient Pressure Sensor Made with MXene Nanosheets for Sensitive Broad-Range Human-Machine Interfacing. , 2019, Nano letters.

[22]  Haihui Wang,et al.  Efficient Electrocatalytic N2 Fixation with MXene under Ambient Conditions , 2019, Joule.

[23]  Xiaolei Yuan,et al.  Integrating MXene nanosheets with cobalt-tipped carbon nanotubes for an efficient oxygen reduction reaction , 2019, Journal of Materials Chemistry A.

[24]  Ligang Wang,et al.  Achieving Highly Efficient Catalysts for Hydrogen Evolution Reaction by Electronic State Modification of Platinum on Versatile Ti3C2Tx (MXene) , 2019, ACS Sustainable Chemistry & Engineering.

[25]  Shubin Yang,et al.  Harnessing the unique properties of 2D materials for advanced lithium-sulfur batteries. , 2019, Nanoscale horizons.

[26]  Martin Pumera,et al.  Characteristics and performance of two-dimensional materials for electrocatalysis , 2018, Nature Catalysis.

[27]  Yadong Li,et al.  Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction , 2018, Nature Catalysis.

[28]  Jiayan Luo,et al.  Aqueous Stable Ti3C2 MXene Membrane with Fast and Photoswitchable Nanofluidic Transport. , 2018, ACS nano.

[29]  L. Näslund,et al.  2D Transition Metal Carbides (MXenes) for Carbon Capture , 2018, Advanced materials.

[30]  C. Park,et al.  Review of MXenes as new nanomaterials for energy storage/delivery and selected environmental applications , 2018, Nano Research.

[31]  Qinfang Zhang,et al.  Layered BiOBr/Ti3C2 MXene composite with improved visible-light photocatalytic activity , 2018, Journal of Materials Science.

[32]  Biaobiao Yang,et al.  Effect of synthesis temperature on the phase structure, morphology and electrochemical performance of Ti3C2 as an anode material for Li-ion batteries , 2018, Ceramics International.

[33]  Hao Yu,et al.  A hydrothermal etching route to synthesis of 2D MXene (Ti3C2, Nb2C): Enhanced exfoliation and improved adsorption performance , 2018, Ceramics International.

[34]  Q. Yan,et al.  Porous MXene Frameworks Support Pyrite Nanodots toward High-Rate Pseudocapacitive Li/Na-Ion Storage. , 2018, ACS applied materials & interfaces.

[35]  Wei Chen,et al.  The Marriage of the FeN4 Moiety and MXene Boosts Oxygen Reduction Catalysis: Fe 3d Electron Delocalization Matters , 2018, Advanced materials.

[36]  Bingxin Wang,et al.  Carbon dioxide adsorption of two-dimensional carbide MXenes , 2018, Journal of Advanced Ceramics.

[37]  Jun Yang,et al.  In-situ grown nanocrystal TiO2 on 2D Ti3C2 nanosheets for artificial photosynthesis of chemical fuels , 2018, Nano Energy.

[38]  Yu Chen,et al.  A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics , 2018, Nano Research.

[39]  Xiaodong He,et al.  Effect of Ti3AlC2 precursor on the electrochemical properties of the resulting MXene Ti3C2 for Li-ion batteries , 2018 .

[40]  Jiaguo Yu,et al.  Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. , 2018, ACS applied materials & interfaces.

[41]  Yury Gogotsi,et al.  Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes , 2018, Nature.

[42]  Jiaguo Yu,et al.  2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction , 2018 .

[43]  Xiaohui Wang,et al.  Surface Functional Groups and Interlayer Water Determine the Electrochemical Capacitance of Ti3C2 T x MXene. , 2018, ACS nano.

[44]  Y. Gogotsi,et al.  MXene molecular sieving membranes for highly efficient gas separation , 2018, Nature Communications.

[45]  Jianbo Wang,et al.  A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances , 2017, Nature Communications.

[46]  X. Bao,et al.  Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries , 2017 .

[47]  Sang-Hoon Park,et al.  Transparent, Flexible, and Conductive 2D Titanium Carbide (MXene) Films with High Volumetric Capacitance , 2017, Advanced materials.

[48]  Pierre-Louis Taberna,et al.  Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides , 2017, Nature Energy.

[49]  Li-xin Song,et al.  Fabrication and thermal stability of NH4HF2-etched Ti3C2 MXene , 2017 .

[50]  M. Andersson,et al.  Synthesis of Ti3AuC2, Ti3Au2C2 and Ti3IrC2 by noble metal substitution reaction in Ti3SiC2 for high-temperature-stable Ohmic contacts to SiC. , 2017, Nature materials.

[51]  Yury Gogotsi,et al.  2D metal carbides and nitrides (MXenes) for energy storage , 2017 .

[52]  Chang E. Ren,et al.  Porous heterostructured MXene/carbon nanotube composite paper with high volumetric capacity for sodium-based energy storage devices , 2016 .

[53]  Jagjit Nanda,et al.  Synthesis and Characterization of 2D Molybdenum Carbide (MXene) , 2016 .

[54]  Yury Gogotsi,et al.  Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers. , 2016, Nanoscale horizons.

[55]  W. Duan,et al.  A few-layered Ti3C2 nanosheet/glass fiber composite separator as a lithium polysulphide reservoir for high-performance lithium–sulfur batteries , 2016 .

[56]  X. Tao,et al.  Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance. , 2016, ACS nano.

[57]  L. An,et al.  Fabrication of layered Ti3C2 with an accordion-like structure as a potential cathode material for high performance lithium–sulfur batteries , 2015 .

[58]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[59]  Yury Gogotsi,et al.  25th Anniversary Article: MXenes: A New Family of Two‐Dimensional Materials , 2014, Advanced materials.

[60]  Yury Gogotsi,et al.  Cation Intercalation and High Volumetric Capacitance of Two-Dimensional Titanium Carbide , 2013, Science.

[61]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[62]  M. Barsoum,et al.  Synthesis and Characterization of Ti3AlC2 , 2004 .

[63]  J. Schuster,et al.  Summary of constitutional data on the Aluminum-Carbon-Titanium system , 1994 .

[64]  C. Tromas,et al.  Synthesis, Characterization, and Intrinsic Hardness of Layered Nanolaminate Ti3AlC2 and Ti3Al0.8Sn0.2C2 Solid Solution , 2012 .

[65]  P. Kamat,et al.  Graphene-based Composites for Electrochemical Energy Storage , 2011 .