Characterization of alumina interfaces in TBC systems

[1]  Ying Zhang,et al.  The effect of Pt content on γ–γ′ NiPtAl coatings , 2008 .

[2]  L. Singheiser,et al.  Why the Growth Rates of Alumina and Chromia Scales on Thin Specimens Differ from those on Thick Specimens , 2008 .

[3]  K. Kawagishi,et al.  The retention of thermal barrier coating systems on single-crystal superalloys: Effects of substrate composition , 2008 .

[4]  P. Hou Segregation Phenomena at Thermally Grown Al 2 O 3 /Alloy Interfaces , 2008 .

[5]  E. Carter,et al.  Structure of and ion segregation to an alumina grain boundary: Implications for growth and creep , 2008 .

[6]  L. Singheiser,et al.  Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements , 2008 .

[7]  D. Clarke,et al.  Effect of Hf, Y and C in the underlying superalloy on the rumpling of diffusion aluminide coatings , 2008 .

[8]  J. Yang,et al.  Infiltration‐Inhibiting Reaction of Gadolinium Zirconate Thermal Barrier Coatings with CMAS Melts , 2008 .

[9]  P. Hou,et al.  Creep in a-Al 2O 3 thermally grown on -NiAl and NiAlPt alloys , 2007 .

[10]  T. Pollock,et al.  Microstructural observations of as-prepared and thermal cycled NiCoCrAlY bond coats , 2006 .

[11]  P. Hou,et al.  Characterization of chemical and microstructural evolutions of a NiPtAl bondcoat during high temperature oxidation , 2006 .

[12]  L. Singheiser,et al.  Parameters affecting TGO growth and adherence on MCrAlY-bond coats for TBC's , 2006 .

[13]  K. Livi,et al.  Observations of reactive element gettering of sulfur in thermally grown oxide pegs , 2006 .

[14]  B. Gleeson,et al.  Oxidation Behavior of Pt+Hf-Modified γ-Ni +γ'-Ni3Al Alloys , 2006 .

[15]  S. Guo,et al.  TEM study on microstructure of thermally grown oxide in EB-PVD thermal barrier coatings , 2006 .

[16]  R. Molins,et al.  Yttrium segregation and intergranular defects in alumina , 2006 .

[17]  Brian Gleeson,et al.  Thermal Barrier Coatings for Aeroengine Applications , 2006 .

[18]  Karren L. More,et al.  Effect of thermally grown oxide (TGO) microstructure on the durability of TBCs with PtNiAl diffusion bond coats , 2006 .

[19]  I. Wright,et al.  A platinum-enriched ? + ?' two-phase bond coat on Ni-based superalloys , 2005 .

[20]  M. Rühle,et al.  Thermochemical compatibility between alumina and ZrO2–GdO3/2 thermal barrier coatings , 2005 .

[21]  B. Pint,et al.  The effect of carbon and reactive element dopants on oxidation lifetime of FeAl , 2005 .

[22]  I. Wright,et al.  Bond coating issues in thermal barrier coatings for industrial gas turbines , 2005 .

[23]  L. Hobbs,et al.  Possible Role of the Oxygen Potential Gradient in Enhancing Diffusion of Foreign Ions on α‐Al2O3 Grain Boundaries , 2005 .

[24]  C. Leyens,et al.  Analytical electron microscopy of the mixed zone in NiCoCrAlY-based EB-PVD thermal barrier coatings: as-coated condition versus late stages of TBC lifetime , 2005 .

[25]  M. Harmer,et al.  Codoping of alumina to enhance creep resistance , 2004 .

[26]  L. Singheiser,et al.  Effect of Combined Yttrium and Zirconium Additions on Protective Alumina Scale Formation on High Purity FeCrAl Alloys during Oxidation in the Temperature Range of 1200 to 1300°C , 2004 .

[27]  E. Opila,et al.  Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions , 2004 .

[28]  A. Evans,et al.  Observations and analyses of failure mechanisms in thermal barrier systems with two phase bond coats based on NiCoCrAlY , 2004 .

[29]  K. Harris,et al.  IMPROVED SINGLE CRYSTAL SUPERALLOYS, CMSX-4 £ (SLS)(La+Y) and CMSX-486 £ , 2004 .

[30]  John R. Nicholls,et al.  Advances in Coating Design for High-Performance Gas Turbines , 2003 .

[31]  H. M. Tawancy,et al.  Effect of superalloy substrate composition on the performance of a thermal barrier coating system , 2003 .

[32]  M. Rühle,et al.  Alumina Grown during Deposition of Thermal Barrier Coatings on NiCrAlY , 2003 .

[33]  B. Pint Optimization of Reactive‐Element Additions to Improve Oxidation Performance of Alumina‐Forming Alloys , 2003 .

[34]  I. Wright,et al.  Effect of Quaternary Additions on the Oxidation Behavior of Hf-Doped NiAl , 2003 .

[35]  P. Hou Impurity Effects on Alumina Scale Growth , 2003 .

[36]  I. Wright,et al.  The use of two reactive elements to optimize oxidation performance of alumina-forming alloys , 2003 .

[37]  I. Wright,et al.  Influence of Sulfur, Platinum, and Hafnium on the Oxidation Behavior of CVD NiAl Bond Coatings , 2002 .

[38]  Y. Ikuhara,et al.  Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3 , 2002 .

[39]  B. Pint,et al.  Optimizing Scale Adhesion on Single Crystal Superalloys , 2001 .

[40]  F. Stott,et al.  High Temperature Oxidation of Thermal Barrier Coating Systems on RR3000 Substrates: Pt Aluminide Bond Coats , 2001 .

[41]  Christoph Leyens,et al.  Influence of substrate material on oxidation behavior and cyclic lifetime of EB-PVD TBC systems , 2001 .

[42]  M. Lance,et al.  As-deposited mixed zone in thermally grown oxide beneath a thermal barrier coating , 2001 .

[43]  L. Hobbs,et al.  Analytical Electron-Microscopy Study of the Breakdown of α-Al2O3 Scales Formed on Oxide Dispersion-Strengthened Alloys , 2001 .

[44]  B. Pint Composition Effects on Aluminide Oxidation Performance: Objectives for Improved Bond Coats , 2001 .

[45]  Josh Kimmel,et al.  Effects of alloy composition on the performance of Yttria stabilized zirconia-thermal barrier coatings , 2000 .

[46]  I. Wright,et al.  Characterization of thermally cycled alumina scales , 2000 .

[47]  M. Harmer,et al.  Role of segregating dopants on the improved creep resistance of aluminum oxide , 1999 .

[48]  Woo Y. Lee,et al.  Synthesis and cyclic oxidation behavior of a (Ni, Pt) Al coating on a desulfurized Ni-base superalloy , 1999 .

[49]  Ilhan A. Aksay,et al.  Electromechanical Behavior of PZT-Brass Unimorphs , 1999 .

[50]  Lucille A. Giannuzzi,et al.  A review of focused ion beam milling techniques for TEM specimen preparation , 1999 .

[51]  F. Stott,et al.  The Effect of Lanthanum on the Scales Developed on Thin Foils of Fe-20Cr-5Al at Very High Temperatures , 1999 .

[52]  G. W. Goward,et al.  Progress in coatings for gas turbine airfoils , 1998 .

[53]  B. Pint,et al.  Grain Boundary Segregation of Cation Dopants in α ‐ Al2 O 3 Scales , 1998 .

[54]  Woo Y. Lee,et al.  Substrate and bond coat compositions: factors affecting alumina scale adhesion , 1998 .

[55]  K. Kawamura,et al.  High temperature transport properties in SrTiO3 under an oxygen potential gradient , 1998 .

[56]  L. Peluso,et al.  Role of environment deposits and operating surface temperature in spallation of air plasma sprayed thermal barrier coatings , 1996 .

[57]  B. Pint Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect , 1996 .

[58]  J. Smialek,et al.  Effects of hydrogen annealing, sulfur segregation and diffusion on the cyclic oxidation resistance of superalloys: A review , 1994 .

[59]  B. Pint Limitations on the Use of Surface Doping for Improving High-Temperature Oxidation Resistance , 1994 .

[60]  H. Grabke,et al.  Effects of orientation and doping with platinum on the oxidation of β-NiAl , 1993 .

[61]  J. Stringer,et al.  Oxide scale adhesion and impurity segregation at the scale/metal interface , 1992 .

[62]  G. Petot-ervas,et al.  Cation redistribution in oxides under oxygen potential gradients: Influence on the corrosion kinetics , 1992 .

[63]  K. Przybylski,et al.  The Influence of Implanted Yttrium on the Mechanisms of Growth of Chromia Scales , 1991 .

[64]  D. R. Sigler Aluminum oxide adherence on Fe-Cr-Al alloys modified with group IIIB, IVB, VB, and VIB elements , 1989 .

[65]  J. Smialek,et al.  Transient oxidation of Single-Crystal β-NiAl , 1989 .

[66]  T. A. Cruse,et al.  Thermal Barrier Coating Life Prediction Model Development , 1988 .

[67]  K. Przybylski,et al.  Segregation of Y to Grain Boundaries in Cr2 O 3 and NiO Scales Formed on an ODS Alloy , 1987 .

[68]  D. Boone,et al.  L'influence du hafnium du substrat sur la résistance à l'oxydation des revêtements d'aluminiures sur les superalliages base nickel☆ , 1987 .

[69]  J. Smeggil,et al.  A relationship between indigenous impurity elements and protective oxide scale adherence characteristics , 1986 .

[70]  G. W. Goward Protective coatings – purpose, role, and design , 1986 .

[71]  Thomas E. Strangman,et al.  Thermal barrier coatings for turbine airfoils , 1985 .

[72]  Robert A. Miller,et al.  Oxidation‐Based Model for Thermal Barrier Coating Life , 1984 .

[73]  T. Ramanarayanan,et al.  The Characteristics of Alumina Scales Formed on Fe‐Based Yttria‐Dispersed Alloys , 1984 .

[74]  D. S. Duvall,et al.  A Silicon and Hafnium Modified Plasma Sprayed MCrAlY Coating for Single Crystal Superalloys , 1984 .

[75]  T. Homma,et al.  X-ray topographic study of β-NiAl upon growth of an α-Al2O3 film , 1982 .

[76]  F. Stott,et al.  The Relationship Between Oxide Grain Morphology and Growth Mechanisms for Fe‐Cr‐Al and Fe‐Cr‐Al‐Y Alloys , 1979 .

[77]  G. H. Meier,et al.  The effect of cerium on the oxidation of Ni-50Cr alloys , 1979 .

[78]  D. McLean,et al.  Grain boundaries in metals , 1958 .