Characterization of hole-diameter in thin metallic plates perforated by spherical projectiles using genetic algorithms
暂无分享,去创建一个
Y. A. Al-Salloum | H. Abbas | S. H. Alsayed | T. H. Almusallam | T. Almusallam | Y. Al-Salloum | S. Alsayed | H. Abbas
[1] Lawrence J. De Chant. A high velocity plate penetration hole diameter relationship based on late time stagnation point flow concepts , 2005, Appl. Math. Comput..
[2] H. Klinkrad. Space Debris: Models and Risk Analysis , 2006 .
[3] Fred L. Whipple,et al. Meteorites and space travel. , 1947 .
[4] M. Hosseini,et al. Growth of hole in thin plates under hypervelocity impact of spherical projectiles , 2006 .
[5] Steffen Schulze-Kremer,et al. Molecular Bioinformatics: Algorithms and Applications , 1995 .
[6] Hiroaki Kitano,et al. Empirical Studies on the Speed of Convergence of Neural Network Training Using Genetic Algorithms , 1990, AAAI.
[7] Stephanie Forrest,et al. Genetic algorithms , 1996, CSUR.
[8] D. R. Sawle,et al. Hypervelocity impact in thin sheets and semi- infinite targets at 15km/sec , 1969 .
[9] T. Wierzbicki,et al. Fracture prediction of thin plates under localized impulsive loading. Part II: discing and petalling , 2005 .
[10] J. A. M. McDonnell,et al. Capture Cells: Decoding the Impacting Projectile Parameters , 1985 .
[11] W. Herrmann,et al. SURVEY OF HYPERVELOCITY IMPACT INFORMATION , 1961 .
[12] Lawrence J. De Chant. Validation of a computational implementation of the Grady–Kipp dynamic fragmentation theory for thin metal plate impacts using an analytical strain-rate model and hydrodynamic analogues , 2005 .
[13] S. Hill,et al. Determination of an empirical model for the prediction of penetration hole diameter in thin plates from hypervelocity impact , 2004 .
[14] M. Edwards,et al. The ballistic properties of tool steel as a potential improvised armour plate , 1997 .
[15] M. Hosseini,et al. Neural network approach for estimation of hole-diameter in thin plates perforated by spherical projectiles , 2008 .
[16] B. P. Denardo,et al. Experimental investigation of the momentum transfer associated with impact into thin aluminum targets , 1969 .
[17] William P. Schonberg,et al. Hypervelocity Impact Penetration Phenomena in Aluminum Space Structures , 1990 .
[18] Andrew J. Piekutowski,et al. Holes produced in thin aluminum sheets by the hypervelocity impact of aluminum spheres , 1999 .
[19] Lawrence J. De Chant. An explanation for the minimal effect of body curvature on hypervelocity penetration hole formation , 2004 .
[20] Anthony G. Atkins,et al. Necking and radial cracking around perforations in thin sheets at normal incidence , 1998 .
[21] Tomasz Wierzbicki,et al. Numerical prediction of fracture in the Taylor test , 2005 .
[22] Zbigniew Michalewicz,et al. Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.
[23] Peter J. Fleming,et al. Evolutionary algorithms in control systems engineering: a survey , 2002 .
[24] W. Q. Shen,et al. A study on the failure of circular plates struck by masses. Part 1: experimental results , 2002 .
[25] David J. Gardner,et al. Hole growth characterisation for hypervelocity impacts in thin targets , 1997 .
[26] T. Wierzbicki. Petalling of plates under explosive and impact loading , 1999 .
[27] Melanie Mitchell,et al. An introduction to genetic algorithms , 1996 .
[28] Andrew J. Piekutowski,et al. Debris clouds generated by hypervelocity impact of cylindrical projectiles with thin aluminum plates , 1987 .
[29] R. F. Rolsten,et al. An Example of Hole Diameter in Thin Plates Due to Hypervelocity Impact , 1964 .