Structure, property and magneto-optical interaction of wide-band-gap layered magnetism near the Néel temperature with antiferromagnetic to paramagnetic transition

[1]  Z. Qiu,et al.  Photoexcitation induced magnetic phase transition and spin dynamics in antiferromagnetic MnPS_3 monolayer , 2023, npj Computational Materials.

[2]  Shu-feng Zhang,et al.  Quantum anomalous Hall effect in an antiferromagnetic monolayer of MoO , 2023, Physical Review B.

[3]  Wei-xiao Ji,et al.  Strain-tunable skyrmions in two-dimensional monolayer Janus magnets. , 2023, Nanoscale.

[4]  Hao Sun,et al.  Valley-dependent topological phase transition and quantum anomalous valley Hall effect in single-layer RuClBr , 2022, Physical Review B.

[5]  C. Autieri,et al.  Controlling magnetic exchange and anisotropy by non-magnetic ligand substitution in layered MPX3 (M = Ni, Mn; X = S, Se) , 2022, 2205.04585.

[6]  Wei Huang,et al.  Strong Neel Ordering and Luminescence Correlation in a Two‐Dimensional Antiferromagnet , 2022, Laser & Photonics Reviews.

[7]  Chang-Hua Liu,et al.  Formation of van der Waals Stacked p–n Homojunction Optoelectronic Device of Multilayered ReSe2 by Cr Doping , 2022, Advanced Optical Materials.

[8]  J. Meijer,et al.  Magnetic Phase Transition in Two-Dimensional CrBr3 Probed by a Quantum Sensor , 2022, Chinese Physics Letters.

[9]  C. Ho,et al.  Thermoreflectance characterization of the band-edge excitons observed in multilayered CuInP2S6 , 2021, FlatChem.

[10]  J. Fabian,et al.  Large exciton binding energies in MnPS3 as a case study of a van der Waals layered magnet , 2021 .

[11]  Xiaodong Xu,et al.  Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator , 2021, Nature Nanotechnology.

[12]  C. Ho,et al.  The band-edge excitons observed in few-layer NiPS3 , 2021, npj 2D Materials and Applications.

[13]  S. Lim,et al.  Thickness dependence of antiferromagnetic phase transition in Heisenberg-type MnPS3 , 2020, 2009.10964.

[14]  A. Wildes,et al.  Magnetoelastic interaction in the two-dimensional magnetic material MnPS3 studied by first principles calculations and Raman experiments , 2020, 2D Materials.

[15]  Y. Vysochanskiǐ,et al.  Electronic and vibrational properties of pure MnPS3 crystal: Theoretical and experimental investigation , 2020, Computational Materials Science.

[16]  Rajat Kumar,et al.  Two Dimensional, Few-Layer MnPS3 for Selective NO2 Gas Sensing Under Ambient Conditions. , 2020, ACS sensors.

[17]  A. Young,et al.  Linear Magnetoelectric Phase in Ultrathin MnPS_{3} Probed by Optical Second Harmonic Generation. , 2020, Physical review letters.

[18]  Juntao Yang,et al.  Electronic, magnetic and optical properties of MnPX3 (X = S, Se) monolayers with and without chalcogen defects: a first-principles study , 2020, RSC advances.

[19]  K. Glukhov,et al.  Raman study of a magnetic phase transition in the MnPS3 single crystal , 2019, Low Temperature Physics.

[20]  Cheol-Hwan Park,et al.  Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy , 2019, 2D Materials.

[21]  Jun Zhang,et al.  Probing the Magnetic Ordering of Antiferromagnetic MnPS3 by Raman Spectroscopy. , 2019, The journal of physical chemistry letters.

[22]  K. Iyer,et al.  Existence of a critical canting angle of magnetic moments to induce multiferroicity in the Haldane spin-chain system Tb2BaNiO5 , 2019, Physical Review B.

[23]  R. Fishman,et al.  Phonons, magnons, and lattice thermal transport in antiferromagnetic semiconductor MnTe , 2019, Physical Review Materials.

[24]  Rajat Kumar,et al.  Bulk and few-layer MnPS3: a new candidate for field effect transistors and UV photodetectors , 2019, Journal of Materials Chemistry C.

[25]  M. Pumera,et al.  Exfoliated Layered Manganese Trichalcogenide Phosphite (MnPX3, X = S, Se) as Electrocatalytic van der Waals Materials for Hydrogen Evolution , 2018, Advanced Functional Materials.

[26]  C. Lien,et al.  High Mobilities in Layered InSe Transistors with Indium‐Encapsulation‐Induced Surface Charge Doping , 2018, Advanced materials.

[27]  Y. Tokura,et al.  Ferromagnetic insulator Cr2Ge2Te6 thin films with perpendicular remanence , 2018, APL Materials.

[28]  Alemayehu S. Admasu,et al.  Patterning-Induced Ferromagnetism of Fe3GeTe2 van der Waals Materials beyond Room Temperature. , 2018, Nano letters.

[29]  C. Ho,et al.  In-Plane Axially Enhanced Photocatalysis by Re4 Diamond Chains in Layered ReS2 , 2018, The Journal of Physical Chemistry C.

[30]  S. Cheong,et al.  The direct observation of ferromagnetic domain of single crystal CrSiTe3 , 2018 .

[31]  Z. Liao,et al.  Spin Direction-Controlled Electronic Band Structure in Two-Dimensional Ferromagnetic CrI3. , 2018, Nano letters.

[32]  Jie Shan,et al.  Electric-field switching of two-dimensional van der Waals magnets , 2018, Nature Materials.

[33]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[34]  J. Gupta,et al.  Room Temperature Intrinsic Ferromagnetism in Epitaxial Manganese Selenide Films in the Monolayer Limit. , 2018, Nano letters.

[35]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[36]  C. Ho,et al.  Curvature-dependent flexible light emission from layered gallium selenide crystals , 2018, RSC advances.

[37]  A. Krasheninnikov,et al.  Vibrational Properties of Metal Phosphorus Trichalcogenides from First-Principles Calculations , 2017 .

[38]  Jingwei Wang,et al.  Isolation and Characterization of Few-Layer Manganese Thiophosphite. , 2017, ACS nano.

[39]  P. Chiu,et al.  High-Mobility InSe Transistors: The Role of Surface Oxides. , 2017, ACS nano.

[40]  M. Fiebig,et al.  Antiferromagnetic opto-spintronics , 2017, 1705.10600.

[41]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[42]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[43]  Xiaodong Xu,et al.  Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics , 2017, Science Advances.

[44]  C. Ho,et al.  Polarized Band‐Edge Emission and Dichroic Optical Behavior in Thin Multilayer GeS , 2017 .

[45]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[46]  S. Okamoto,et al.  Gate-Controllable Magneto-optic Kerr Effect in Layered Collinear Antiferromagnets. , 2016, Physical review letters.

[47]  Je-Guen Park Opportunities and challenges of 2D magnetic van der Waals materials: magnetic graphene? , 2016, Journal of physics. Condensed matter : an Institute of Physics journal.

[48]  Qihua Xiong,et al.  Weak Van der Waals Stacking, Wide-Range Band Gap, and Raman Study on Ultrathin Layers of Metal Phosphorus Trichalcogenides. , 2016, ACS nano.

[49]  T. J. Hicks,et al.  Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3 , 2015 .

[50]  A. Krasheninnikov,et al.  Single-Layer ReS₂: Two-Dimensional Semiconductor with Tunable In-Plane Anisotropy. , 2015, ACS nano.

[51]  T. Jungwirth,et al.  Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe , 2015, Nature Communications.

[52]  Andres Castellanos-Gomez,et al.  Photocurrent generation with two-dimensional van der Waals semiconductors. , 2015, Chemical Society reviews.

[53]  F. Guinea,et al.  Strain engineering in semiconducting two-dimensional crystals , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[54]  C. Ho,et al.  Thickness-tunable band gap modulation in γ-In2Se3 , 2013 .

[55]  Y. Vysochanskiǐ,et al.  Temperature behavior of the fundamental optical absorption band in quasi-two-dimensional crystalline MnPS3 , 2012 .

[56]  M. A. Badr,et al.  Synthesis and characterization of MnPS3 for hydrogen sorption , 2010 .

[57]  M. Wong,et al.  Characterization of indirect and direct interband transitions of anatase TiO2 by thermoreflectance spectroscopy , 2008 .

[58]  C. Ho,et al.  Photoconductance and photoresponse of layer compound photodetectors in the UV-visible region , 2006 .

[59]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[60]  C. Ho,et al.  Polarization sensitive behaviour of the band-edge transitions in ReS2 and ReSe2 layered semiconductors , 2004 .

[61]  Y. Takahashi,et al.  Magnetic properties and specific heat of MPS3 (M=Mn, Fe, Zn) , 2004 .

[62]  Krystek,et al.  Temperature dependence of the direct gaps of ZnSe and Zn0.56Cd0.44Se. , 1996, Physical review. B, Condensed matter.

[63]  Joy,et al.  Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). , 1992, Physical review. B, Condensed matter.

[64]  Grasso,et al.  Optical-absorption spectra of crystal-field transitions in MnPS3 at low temperatures. , 1991, Physical review. B, Condensed matter.

[65]  C. Julien,et al.  LATTICE-DYNAMICS OF LAYERED MPX3 (M=MN,FE,NI,ZN, X=S,SE) COMPOUNDS , 1988 .

[66]  M. Hangyo,et al.  Raman spectra of MnPS3 intercalated with pyridine , 1988 .

[67]  M. Cardona,et al.  Interband critical points of GaAs and their temperature dependence. , 1987, Physical review. B, Condensed matter.

[68]  G. Ouvrard,et al.  Structural determination of some MPS3 layered phases (M = Mn, Fe, Co, Ni and Cd) , 1985 .

[69]  Stergios Logothetidis,et al.  Temperature dependence of the dielectric function of germanium , 1984 .

[70]  Y. Mathey,et al.  Vibrational study of layered MPX3 compounds and of some intercalates with Co(.eta.5-C5H5)2+ or Cr(.eta.6-C6H6)2+ , 1980 .

[71]  G. Ouvrard,et al.  Physical properties of lithium intercalation compounds of the layered transition-metal chalcogenophosphites , 1979 .

[72]  N. Mermin,et al.  Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models , 1966 .

[73]  T. Moriya Anisotropic Superexchange Interaction and Weak Ferromagnetism , 1960 .

[74]  M. Jiang,et al.  Lattice distortion and magnetic property of high entropy alloys at low temperatures , 2022, Journal of Materials Science & Technology.

[75]  Kai Xiao,et al.  Ultrathin nanosheets of CrSiTe3: a semiconducting two-dimensional ferromagnetic material , 2016 .

[76]  G. L. Flem,et al.  Magnetic interactions in the layer compounds MPX3 (M = Mn, Fe, Ni; X = S, Se) , 1982 .

[77]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .