Particle Indistinguishability Symmetry within a Field Theory. Entropic Effects

In this paper, we briefly discuss a field theory approach of classical statistical mechanics. We show how an essentially entropic functional accounts for fundamental symmetries related to quantum mechanical properties which hold out in the classical limit of the quantum description. Within this framework, energetic and entropic properties are treated at equal level. Based on a series of examples on electrolytes, we illustrate how this framework gives simple interpretations where entropic fluctuations of anions and cations compete with the energetic properties related to the interaction potential.

[1]  R. Coalson,et al.  Lattice field theory for spherical macroions in solution: Calculation of equilibrium pair correlation functions , 1994 .

[2]  R. Evans The role of capillary wave fluctuations in determining the liquid-vapour interface , 1981 .

[3]  G. Torrie,et al.  Electrical double layers. VI. Image effects for divalent ions , 1984 .

[4]  Shu-Kun Lin The Nature of the Chemical Process. 1. Symmetry Evolution – Revised Information Theory, Similarity Principle and Ugly Symmetry , 2000 .

[5]  D. di Caprio,et al.  On the contact conditions for the charge profile in the theory of the electrical double layer for nonsymmetrical electrolytes. , 2008, The Journal of chemical physics.

[6]  J. Badiali,et al.  A formally exact field theory for classical systems at equilibrium , 2007, 0707.3069.

[7]  Rob D. Coalson,et al.  Systematic ionic screening theory of macroions , 1992 .

[8]  Z. Borkowska,et al.  Anomalous temperature dependence of differential capacity at an uncharged interface with Debye-Huckel electrolyte: Field theoretical approach , 2005 .

[9]  G. Parisi,et al.  Statistical Field Theory , 1988 .

[10]  D. Henderson,et al.  A modified Poisson-Boltzmann analysis of the capacitance behavior of the electric double layer at low temperatures. , 2005, The Journal of chemical physics.

[11]  L. Scriven,et al.  Non-local free-energy density-functional theory applied to the electrical double layer: Part II: 2:1 electrolytes , 1991 .

[12]  J. Badiali,et al.  A field theory study of the effect of specific interactions in ionic systems: A simple model , 1998 .

[13]  A. Kholodenko Path integral versus conventional formulation of equilibrium classical statistical mechanics , 1989 .

[14]  D. Wasan,et al.  LOW TEMPERATURE ANOMALIES IN THE PROPERTIES OF THE ELECTROCHEMICAL INTERFACE , 1999 .

[15]  A. Patrykiejew,et al.  Phase behavior of ionic fluids in slitlike pores: a density functional approach for the restricted primitive model. , 2004, The Journal of chemical physics.

[16]  J. Badiali,et al.  A SIMPLE MODEL FOR COULOMBIC SYSTEMS. THERMODYNAMICS, CORRELATION FUNCTIONS AND CRITICALITY , 1997 .

[17]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[18]  L. Lue,et al.  Electrolytes at spherical dielectric interfaces. , 2005, The Journal of chemical physics.

[19]  D. Henderson,et al.  The capacitance of the electrical double layer of valence-asymmetric salts at low reduced temperatures , 2007 .

[20]  D. di Caprio,et al.  Field theoretical approach to inhomogeneous ionic systems: thermodynamic consistency with the contact theorem, Gibbs adsorption and surface tension , 2003 .

[21]  D. Blankschtein,et al.  Incorporation of nonelectrostatic interactions in the Poisson- Boltzmann equation , 1999 .

[22]  Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. II. High-Temperature Expansion , 2001, cond-mat/0104174.

[23]  N. Ben-Tal,et al.  DIELECTRIC CONSTANT EFFECTS ON THE ENERGETICS OF OPPOSITELY CHARGED COLLOIDS : A LATTICE FIELD THEORY STUDY , 1994 .

[24]  H. Woo,et al.  Functional integral formulations for classical fluids , 2001 .

[25]  A. Beyerlein,et al.  The liquid-gas transition for symmetric electrolytes: Field-theoretic treatment , 1988 .

[26]  R. Netz Static van der Waals interactions in electrolytes , 2001 .

[27]  J. Caillol Statistical field theory for simple fluids: mean field and Gaussian approximations , 2002, cond-mat/0211113.

[28]  A. Siegert PARTITION FUNCTIONS AS AVERAGES OF FUNCTIONALS OF GAUSSIAN RANDOM FUNCTIONS , 1960 .

[29]  L. Blum Theory of electrified interfaces , 1977 .

[30]  M. Kac On the Partition Function of a One‐Dimensional Gas , 1959 .

[31]  D. di Caprio,et al.  Spontaneous polarization of the neutral interface for valence asymmetric coulombic systems. , 2008, Journal of Physical Chemistry B.

[32]  Simple extension of a field theory approach for the description of the double layer accounting for excluded volume effects , 2007 .

[33]  R. Netz,et al.  Electrostatistics of counter-ions at and between planar charged walls: From Poisson-Boltzmann to the strong-coupling theory , 2001 .

[34]  David C. Brydges,et al.  Coulomb Systems at Low Density: A Review , 1999 .

[35]  D. Henderson,et al.  Competition between the effects of asymmetries in ion diameters and charges in an electrical double layer studied by Monte Carlo simulations and theories , 2004 .

[36]  The functional of the grand partition function for the investigation of the liquid-gas critical point , 1990 .

[37]  D Henderson,et al.  Temperature dependence of the double layer capacitance for the restricted primitive model of an electrolyte solution from a density functional approach. , 2005, The Journal of chemical physics.

[38]  Douglas Henderson,et al.  Monte Carlo study of the capacitance of the double layer in a model molten salt , 1999 .

[39]  Douglas Henderson,et al.  On the influence of ionic association on the capacitance of an electrical double layer , 2001 .

[40]  Kholodenko,et al.  Theory of symmetric electrolyte solutions: Field-theoretic approach. , 1986, Physical review. A, General physics.

[41]  O. Patsahan,et al.  Grand canonical distribution for multicomponent system in the collective variables method , 1995 .

[42]  Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. I. Low Fugacity Expansion , 2001, cond-mat/0104173.

[43]  J. Hubbard,et al.  Wilson theory of a liquid-vapour critical point , 1972 .

[44]  J. Hubbard Calculation of Partition Functions , 1959 .

[45]  D. Henderson,et al.  On the low temperature anomalies in the properties of the electrochemical interface. A non-local free-energy density functional approach , 2001 .

[46]  Henri Orland,et al.  Beyond Poisson-Boltzmann: Fluctuation effects and correlation functions , 2000 .

[47]  Sine-Gordon Theory for the Equation of State of Classical Hard-Core Coulomb Systems. III. Loopwise Expansion , 2003, cond-mat/0305465.