Is Entropy Suitable to Characterize Data and Signals for Cognitive Informatics?

This article provides a review of Shannon and other entropy measures in evaluating the quality of materials used in perception, cognition, and learning processes. Energy-based metrics are not suitable for cognition, as energy itself does not carry information. Instead, morphological (structural and contextual) metrics as well as entropy-based multi-scale metrics should be considered in cognitive informatics. Appropriate data and signal transformation processes are defined and discussed in the perceptual framework followed by various classes of information and entropies suitable for characterization of data, signals, and distortion. Other entropies are also described including the Rényi generalized entropy spectrum, Kolmogorov complexity measure, Kolmogorov-Sinai entropy, and Prigogine entropy for evolutionary dynamical systems. Although such entropy-based measures are suitable for many signals, they are not sufficient for scale-invariant (fractal and multifractal) signals without corresponding complementary multiscale measures.

[1]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[2]  I. Prigogine,et al.  The end of certainty : time, chaos, and the new laws of nature , 1997 .

[3]  A. Spanias,et al.  Perceptual coding of digital audio , 2000, Proceedings of the IEEE.

[4]  Robert J. Safranek,et al.  Signal compression based on models of human perception , 1993, Proc. IEEE.

[5]  Mill Johannes G.A. Van,et al.  Transmission Of Information , 1961 .

[6]  Yingxu Wang,et al.  On Cognitive Informatics , 2002, Proceedings First IEEE International Conference on Cognitive Informatics.

[7]  R. Rohwer Order out of Chaos: Man's New Dialogue with Nature , 1986 .

[8]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[9]  J. Sprott Chaos and time-series analysis , 2001 .

[10]  G. Williams Chaos theory tamed , 1997 .

[11]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[12]  Michael F. Barnsley,et al.  Fractals everywhere , 1988 .

[13]  Witold Kinsner,et al.  New relative multifractal dimension measures , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[14]  J. Yorke,et al.  Chaos: An Introduction to Dynamical Systems , 1997 .

[15]  G. Blelloch Introduction to Data Compression * , 2022 .

[16]  W. Kinsner Compression and its metrics for multimedia , 2002, Proceedings First IEEE International Conference on Cognitive Informatics.

[17]  Eric Ashby Thinking about complexity , 1977, Nature.

[18]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[19]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[20]  T. Vicsek Fractal Growth Phenomena , 1989 .

[21]  A. Oppenheim,et al.  Signal processing with fractals: a wavelet-based approach , 1996 .

[22]  Harald Atmanspacher,et al.  A fundamental link between system theory and statistical mechanics , 1987 .

[23]  Nikil Jayant,et al.  Signal Compression: Technology Targets and Research Directions , 1992, IEEE J. Sel. Areas Commun..

[24]  Y. Pesin CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .

[25]  Stephen W. Hawking,et al.  The Illustrated A Brief History of Time , 1996 .

[26]  T. Stonier Book-Review - Information and the Internal Structure of the Universe - an Exploration Into Information Physics , 1990 .

[27]  A. W. M. van den Enden,et al.  Discrete Time Signal Processing , 1989 .

[28]  D. Lewkowicz,et al.  A dynamic systems approach to the development of cognition and action. , 2007, Journal of cognitive neuroscience.

[29]  Khalid Sayood,et al.  Introduction to data compression (2nd ed.) , 2000 .

[30]  Christine W. Chan Cognitive informatics: a knowledge engineering perspective , 2002, Proceedings First IEEE International Conference on Cognitive Informatics.

[31]  Roy E. Plotnick Fractals and Chaos in Geology and Geophysics , 1994 .

[32]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[33]  Joan L. Mitchell,et al.  JPEG: Still Image Data Compression Standard , 1992 .

[34]  Léon Nicholas Brillouin,et al.  Scientific Uncertainty and Information , 1964 .

[35]  Witold Kinsner,et al.  A Relative Fractal Dimension Spectrum as a Complexity Measure , 2006, 2006 5th IEEE International Conference on Cognitive Informatics.

[36]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[37]  Witold Kinsner,et al.  Characterizing chaos through Lyapunov metrics , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[38]  Gilbert Held,et al.  Data compression - techniques and applications: hardware and software considerations (3. ed.) , 1986 .

[39]  Herbert Spohn,et al.  Book review: Time's arrow; the origin of thermodynamic behavior , 1992 .