Atomic assembly of Cu/Ta multilayers: Surface roughness, grain structure, misfit dislocations, and amorphization

Molecular dynamics simulations and selected experiments have been carried out to study the growth of Cu films on (010) bcc Ta and the deposition of CuxTa1−x alloy films on (111) fcc Cu. They indicate that fcc Cu films with a (111) texture are always formed when Cu is deposited on Ta surfaces. These films are polycrystalline even when the Ta substrate is single crystalline. The grains have one of two different orientations and are separated by either orientational or misfit dislocations. Periodic misfit dislocations and stacking faults develop within these grains to release structure difference induced misfit strain energy. The Cu film surface roughness was found to decrease with increase in the adatom energy for deposition. When CuxTa1−x is deposited on Ta, the films always have a higher Cu composition than that of the vapor mixture. This arises from a surface segregation phenomenon. When the Cu and Ta fractions in the films are comparable, amorphous structures form. The fundamental origins for the segreg...

[1]  H. Wadley,et al.  Low energy sputtering of nickel by normally incident xenon ions , 2005 .

[2]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[3]  T. Masumoto,et al.  Structural Stability and Mechanical Properties of Amorphous Metals , 1975 .

[4]  S. Rossnagel Directional and ionized physical vapor deposition for microelectronics applications , 1998 .

[5]  R. Johnson,et al.  Surfactant-mediated growth of giant magnetoresistance multilayers , 2001 .

[6]  Fenghua Zhou,et al.  High tensile ductility in a nanostructured metal , 2002, Nature.

[7]  William D. Nix,et al.  Mechanical properties of thin films , 1989 .

[8]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[9]  H. Wadley,et al.  Atomic assembly of metal surfaces and interfaces , 2006 .

[10]  B. Liu,et al.  Prediction of solid-state amorphization in binary metal systems , 2000 .

[11]  Hwang,et al.  Strain Relaxation in Hexagonally Close-Packed Metal-Metal Interfaces. , 1995, Physical review letters.

[12]  H. Wadley,et al.  Low energy ion assisted deposition of Ta/Cu films , 2007 .

[13]  Modeling metallic island coalescence stress via adhesive contact between surfaces , 2005, cond-mat/0511481.

[14]  H. Gong,et al.  Interface stability and solid-state amorphization in an immiscible Cu-Ta system , 2003 .

[15]  S. Rossnagel Thin film deposition with physical vapor deposition and related technologies , 2003 .

[16]  R. Johnson,et al.  Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers , 2004 .

[17]  Johnson Alloy models with the embedded-atom method. , 1989, Physical review. B, Condensed matter.

[18]  Interface engineering of short-period Ni/V multilayer X-ray mirrors , 2006 .

[19]  B. Liu,et al.  Influence of interfacial texture on solid-state amorphization and associated asymmetric growth in immiscible Cu-Ta multilayers , 2004 .

[20]  M. Julliere Tunneling between ferromagnetic films , 1975 .

[21]  S. Parkin,et al.  Dramatic enhancement of interlayer exchange coupling and giant magnetoresistance in Ni81Fe19/Cu multilayers by addition of thin Co interface layers , 1992 .

[22]  Daniel Abou-Ras,et al.  Development of thin‐film Cu(In,Ga)Se2 and CdTe solar cells , 2004 .

[23]  Hamilton,et al.  Misfit dislocation structure for close-packed metal-metal interfaces. , 1995, Physical review letters.

[24]  H. Wadley,et al.  The low energy ion assisted control of interfacial structure: Ion incident energy effects , 2000 .

[25]  H. Wadley,et al.  Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy , 1998 .

[26]  B. Liu,et al.  Formation and Theoretical Modeling of Non‐Equilibrium Alloy Phases by Ion Mixing , 1997 .

[27]  Robert Sinclair,et al.  Solid-state amorphization at tetragonal-Ta/Cu interfaces , 1999 .

[28]  B. Thijsse,et al.  Molecular Dynamics simulations of Cu/Ta and Ta/Cu thin film growth , 2003 .

[29]  T. Egami Universal criterion for metallic glass formation , 1997 .

[30]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[31]  F. Zeng,et al.  Amorphous alloy film formed in an immiscible Cu–Ta system by ion beam assisted deposition , 2002 .

[32]  J. Anderson,et al.  Spin dependent tunneling devices fabricated using photolithography , 1996 .

[33]  Tomohiro Ohta,et al.  Diffusion barrier effects of transition metals for Cu/M/Si multilayers (M=Cr, Ti, Nb, Mo, Ta, W) , 1994 .

[34]  R. Sinclair,et al.  Thermal stability of a Cu/Ta multilayer : An intriguing interfacial reaction , 1999 .

[35]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[36]  H. Wadley,et al.  Misfit dislocations in gold/Permalloy multilayers , 2004 .

[37]  G. Waters,et al.  Thin film processing by biased target ion beam deposition , 2000 .

[38]  J. Hirvonen Ion Beam Assisted Thin Film Deposition , 1991 .

[39]  J. H. Kim,et al.  The corrosion behavior of sputter-deposited amorphous titanium-chromium alloys in 1 M and 6 M HCl solutions , 1993 .

[40]  Kinder,et al.  Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. , 1995, Physical review letters.

[41]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[42]  H. Wadley,et al.  Low energy ion assisted atomic assembly of metallic superlattices , 2006 .

[43]  H. Wadley,et al.  Low-energy ion-assisted control of interfacial structures in metallic multilayers , 2007 .

[44]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .