On the construction of probabilistic Newton-type algorithms
暂无分享,去创建一个
[1] Johan Dahlin,et al. Sequential Monte Carlo Methods for System Identification , 2015, 1503.06058.
[2] Martin Kiefel,et al. Quasi-Newton Methods: A New Direction , 2012, ICML.
[3] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[4] Jan R. Magnus,et al. The Elimination Matrix: Some Lemmas and Applications , 1980, SIAM J. Algebraic Discret. Methods.
[5] F. Lindsten,et al. Particle Filter-Based Gaussian Process Optimisation for Parameter Inference , 2013, 1311.0689.
[6] Thomas B. Schön,et al. System identification of nonlinear state-space models , 2011, Autom..
[7] R. Fletcher,et al. A New Approach to Variable Metric Algorithms , 1970, Comput. J..
[8] C. G. Broyden. A Class of Methods for Solving Nonlinear Simultaneous Equations , 1965 .
[9] Eric Moulines,et al. Inference in hidden Markov models , 2010, Springer series in statistics.
[10] C. G. Broyden. The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .
[11] Iain Murray. Introduction To Gaussian Processes , 2008 .
[12] Michael A. Osborne,et al. Gaussian Processes for Global Optimization , 2008 .
[13] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[14] A. Doucet,et al. A Tutorial on Particle Filtering and Smoothing: Fifteen years later , 2008 .
[15] Philipp Hennig,et al. Fast Probabilistic Optimization from Noisy Gradients , 2013, ICML.
[16] Andrew Gordon Wilson,et al. Student-t Processes as Alternatives to Gaussian Processes , 2014, AISTATS.
[17] C. G. Broyden. Quasi-Newton methods and their application to function minimisation , 1967 .
[18] Philipp Hennig,et al. Probabilistic Interpretation of Linear Solvers , 2014, SIAM J. Optim..
[19] Philipp Hennig,et al. Probabilistic Line Searches for Stochastic Optimization , 2015, NIPS.
[20] Niklas Wahlstrom,et al. Modeling of Magnetic Fields and Extended Objects for Localization Applications , 2015 .
[21] A. Doucet,et al. Monte Carlo Smoothing for Nonlinear Time Series , 2004, Journal of the American Statistical Association.
[22] Jorge Nocedal,et al. A Stochastic Quasi-Newton Method for Large-Scale Optimization , 2014, SIAM J. Optim..
[23] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[24] Larry Nazareth,et al. A family of variable metric updates , 1977, Math. Program..
[25] Nando de Freitas,et al. Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.
[26] Simon J. Godsill,et al. On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..
[27] Arnaud Doucet,et al. On Particle Methods for Parameter Estimation in State-Space Models , 2014, 1412.8695.
[28] D. Shanno. Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .
[29] Michael A. Osborne,et al. Probabilistic numerics and uncertainty in computations , 2015, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[30] Thomas B. Schön,et al. Estimation of general nonlinear state-space systems , 2010, 49th IEEE Conference on Decision and Control (CDC).
[31] Roger Fletcher,et al. A Rapidly Convergent Descent Method for Minimization , 1963, Comput. J..