Compact metric spaces as minimal-limit sets in domains of bottomed sequences

Every compact metric space $X$ is homeomorphically embedded in an $\omega$-algebraic domain $D$ as the set of minimal limit (that is, non-finite) elements. Moreover, $X$ is a retract of the set $L(D)$ of all limit elements of $D$. Such a domain $D$ can be chosen so that it has property M and finite-branching, and the height of $L(D)$ is equal to the small inductive dimension of $X$. We also show that the small inductive dimension of $L(D)$ as a topological space is equal to the height of $L(D)$ for domains with property M. These results give a characterisation of the dimension of a space $X$ as the minimal height of $L(D)$ in which $X$ is embedded as the set of minimal elements. The domain in which we embed an $n$-dimensional compact metric space $X$ ($n \leq \infinity$) has a concrete structure in that it consists of finite/infinite sequences in $\{0,1,\bot\}$ with at most $n$ copies of $\bot$.

[1]  Victor Neumann-Lara,et al.  Compact Compatible Topologies for Posets and Graphs , 1998 .

[2]  Jens Blanck Domain representations of topological spaces , 2000, Theor. Comput. Sci..

[3]  Pietro Di Gianantonio An Abstract Data Type for Real Numbers , 1999, Theor. Comput. Sci..

[4]  Gordon D. Plotkin,et al.  A Powerdomain Construction , 1976, SIAM J. Comput..

[5]  R. Kopperman,et al.  On the role of finite, hereditarily normal spaces and maps in the genesis of compact Hausdorff spaces , 2004 .

[6]  Abbas Edalat,et al.  A Domain-Theoretic Approach to Computability on the Real Line , 1999, Theor. Comput. Sci..

[7]  Klaus Weihrauch,et al.  Embedding Metric Spaces Into CPO's , 1981, Theor. Comput. Sci..

[8]  Abbas Edalat,et al.  Domains for Computation in Mathematics, Physics and Exact Real Arithmetic , 1997, Bulletin of Symbolic Logic.

[9]  Michael B. Smyth,et al.  Effectively given Domains , 1977, Theor. Comput. Sci..

[10]  Hideki Tsuiki Computational Dimension of Topological Spaces , 2000, CCA.

[11]  G. Nöbeling Über einen-dimensionale Universalmenge imR2n+1 , 1931 .

[12]  Viggo Stoltenberg-Hansen,et al.  Mathematical theory of domains , 1994, Cambridge tracts in theoretical computer science.

[13]  Martín Hötzel Escardó,et al.  Properly injective spaces and function spaces , 1998 .

[14]  Hideki Tsuiki,et al.  Real number computation through Gray code embedding , 2002, Theor. Comput. Sci..

[15]  G. Plotkin Tω as a Universal Domain , 1978 .

[16]  Klaus Weihrauch,et al.  Computable Analysis: An Introduction , 2014, Texts in Theoretical Computer Science. An EATCS Series.

[17]  A. Jung,et al.  Cartesian closed categories of domains , 1989 .

[18]  Martín Hötzel Escardó,et al.  PCF Extended with Real Numbers , 1996, Theor. Comput. Sci..