Porous Organic Materials: Strategic Design and Structure-Function Correlation.

Porous organic materials have garnered colossal interest with the scientific fraternity due to their excellent gas sorption performances, catalytic abilities, energy storage capacities, and other intriguing applications. This review encompasses the recent significant breakthroughs and the conventional functions and practices in the field of porous organic materials to find useful applications and imparts a comprehensive understanding of the strategic evolution of the design and synthetic approaches of porous organic materials with tunable characteristics. We present an exhaustive analysis of the design strategies with special emphasis on the topologies of crystalline and amorphous porous organic materials. In addition to elucidating the structure-function correlation and state-of-the-art applications of porous organic materials, we address the challenges and restrictions that prevent us from realizing porous organic materials with tailored structures and properties for useful applications.

[1]  Wenchuan Wang,et al.  Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. , 2009, Angewandte Chemie.

[2]  C. Janiak,et al.  Highly stable nanoporous covalent triazine-based frameworks with an adamantane core for carbon dioxide sorption and separation , 2013 .

[3]  A. Cooper,et al.  High Surface Area Conjugated Microporous Polymers: The Importance of Reaction Solvent Choice , 2010 .

[4]  M. Antonietti,et al.  Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide , 2007 .

[5]  Liming Zhang,et al.  Cationic Covalent Organic Frameworks: A Simple Platform of Anionic Exchange for Porosity Tuning and Proton Conduction. , 2016, Journal of the American Chemical Society.

[6]  X. Tan,et al.  High performance post-modified polymers of intrinsic microporosity (PIM-1) membranes based on multivalent metal ions for gas separation , 2016 .

[7]  Andrew I. Cooper,et al.  Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture , 2011 .

[8]  Zhigang Xie,et al.  Highly stable and porous cross-linked polymers for efficient photocatalysis. , 2011, Journal of the American Chemical Society.

[9]  Irving Langmuir,et al.  THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. II. LIQUIDS.1 , 1917 .

[10]  Buyin Li,et al.  Knitting hypercrosslinked conjugated microporous polymers with external crosslinker , 2015 .

[11]  Zhaoqi Guo,et al.  Supercapacitive energy storage and electric power supply using an aza-fused π-conjugated microporous framework. , 2011, Angewandte Chemie.

[12]  M. Pope,et al.  Photovoltaic Effect in Organic Crystals , 1959 .

[13]  Huijun Zhao,et al.  Targeted synthesis of a porous aromatic framework with a high adsorption capacity for organic molecules , 2011 .

[14]  Wei Wei,et al.  Membrane performance requirements for carbon dioxide capture using hydrogen-selective membranes in i , 2011 .

[15]  R. Zou,et al.  Covalent organic frameworks formed with two types of covalent bonds based on orthogonal reactions. , 2015, Journal of the American Chemical Society.

[16]  M. O'keeffe,et al.  The Reticular Chemistry Structure Resource (RCSR) database of, and symbols for, crystal nets. , 2008, Accounts of chemical research.

[17]  P. Budd,et al.  A nanoporous network polymer derived from hexaazatrinaphthylene with potential as an adsorbent and catalyst support , 2003 .

[18]  Basudev Roy,et al.  Site specific supramolecular heterogeneous catalysis by optically patterned soft oxometalate–porous organic framework (SOM–POF) hybrid on a chip , 2015 .

[19]  B. Dorney,et al.  Nanoporous Polymers Containing Stereocontorted Cores for Hydrogen Storage , 2009 .

[20]  Michael O'Keeffe,et al.  Taxonomy of periodic nets and the design of materials. , 2007, Physical chemistry chemical physics : PCCP.

[21]  Michael O'Keeffe,et al.  Three-periodic nets and tilings: regular and quasiregular nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[22]  Dingcai Wu,et al.  Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage. , 2014, Chemical communications.

[23]  P. Budd,et al.  Phthalocyanine-based nanoporous network polymers. , 2002, Chemical communications.

[24]  Irving Langmuir THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. , 1916 .

[25]  F. Švec,et al.  A new approach to the preparation of large surface area poly(styrene-co-divinylbenzene) monoliths via knitting of loose chains using external crosslinkers and application of these monolithic columns for separation of small molecules , 2014 .

[26]  S. Qiu,et al.  Synthesis and Gas Storage Application of Hierarchically Porous Materials , 2016 .

[27]  E. E. Miller,et al.  Physical Theory for Capillary Flow Phenomena , 1956 .

[28]  D. Sherrington,et al.  Rapid Generation and Control of Microporosity, Bimodal Pore Size Distribution, and Surface Area in Davankov-Type Hyper-Cross-Linked Resins , 2006 .

[29]  Chongli Zhong,et al.  Molecular simulation study of the stepped behaviors of gas adsorption in two-dimensional covalent organic frameworks. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[30]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[31]  C. Ochsenfeld,et al.  Tunable Water and CO2 Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering , 2015 .

[32]  Jiaxing Jiang,et al.  High surface area hypercrosslinked microporous organic polymer networks based on tetraphenylethylene for CO2 capture , 2014 .

[33]  K. Crailsheim,et al.  Nutrition and health in honey bees , 2010, Apidologie.

[34]  Chaodi Xu,et al.  Synthesis of microporous organic polymers with high CO2-over-N2 selectivity and CO2 adsorption , 2013 .

[35]  F. Švec,et al.  Nanoporous, hypercrosslinked polypyrroles: effect of crosslinking moiety on pore size and selective gas adsorption. , 2009, Chemical communications.

[36]  C. S. Fuller,et al.  A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power , 1954 .

[37]  A. Cooper,et al.  Porous organic molecular solids by dynamic covalent scrambling. , 2011, Nature communications.

[38]  De-jun Wang,et al.  A multifunctional metal-organic open framework with a bcu topology constructed from undecanuclear clusters. , 2006, Angewandte Chemie.

[39]  O. Yaghi,et al.  Reticular Chemistry and Metal-Organic Frameworks for Clean Energy , 2009 .

[40]  A. Cooper,et al.  Alkylated organic cages: from porous crystals to neat liquids , 2012 .

[41]  Heping Ma,et al.  Synthesis of a porous aromatic framework for adsorbing organic pollutants application , 2011 .

[42]  Johannes T. Margraf,et al.  Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks , 2016 .

[43]  Iris M. Oppel,et al.  A permanent mesoporous organic cage with an exceptionally high surface area. , 2014, Angewandte Chemie.

[44]  P. Veverka,et al.  Mechanism of hypercrosslinking of chloromethylated styrene–divinylbenzene copolymers , 1999 .

[45]  A. Cooper,et al.  Microporous poly(tri(4-ethynylphenyl)amine) networks:synthesis, properties, and atomistic simulation , 2009 .

[46]  Neil L. Campbell,et al.  High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers. , 2009, Chemical communications.

[47]  S. Dai,et al.  Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates , 2014, Nature Communications.

[48]  S. Qiu,et al.  Enhanced recognition of a nitrogen containing organic compound by adjusting the acidity of the porous organic frameworks base (JUC-Z2) , 2015 .

[49]  J. F. Stoddart,et al.  Covalent Organic Frameworks with High Charge Carrier Mobility , 2011 .

[50]  A. Thornton,et al.  Feasibility of Mixed Matrix Membrane Gas Separations Employing Porous Organic Cages , 2014 .

[51]  F. Stillinger,et al.  Optimal packings of superballs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  A. Cooper,et al.  Synthetic control of the pore dimension and surface area in conjugated microporous polymer and copolymer networks. , 2008, Journal of the American Chemical Society.

[53]  G. Garberoglio,et al.  Computer simulation of the adsorption of light gases in covalent organic frameworks. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[54]  Yuan Zhang,et al.  Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. , 2011, Journal of the American Chemical Society.

[55]  Alberto Riaño,et al.  One-pot synthesis of 1,3,5-triazine derivatives via controlled cross-cyclotrimerization of nitriles: a mechanism approach. , 2014, The Journal of organic chemistry.

[56]  William R. Dichtel,et al.  Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene , 2011, Science.

[57]  K. Hashimoto,et al.  Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction. , 2015, Angewandte Chemie.

[58]  S. Qiu,et al.  A covalently-linked microporous organic-inorganic hybrid framework containing polyhedral oligomeric silsesquioxane moieties. , 2011, Dalton transactions.

[59]  D. Avnir,et al.  Recommendations for the characterization of porous solids (Technical Report) , 1994 .

[60]  Neil L. Campbell,et al.  Hydrogen Storage in Microporous Hypercrosslinked Organic Polymer Networks , 2007 .

[61]  Reiner Sebastian Sprick,et al.  Conjugated Polymers of Intrinsic Microporosity (C‐PIMs) , 2014 .

[62]  Rajamani Krishna,et al.  Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation , 2010 .

[63]  A. Neimark,et al.  Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts , 1998 .

[64]  Weiqiao Deng,et al.  Lithium-doped conjugated microporous polymers for reversible hydrogen storage. , 2010, Angewandte Chemie.

[65]  P. Budd,et al.  Free volume and intrinsic microporosity in polymers , 2005 .

[66]  D. H. Everett,et al.  INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY PHYSICAL CHEMISTRY DIVISION COMMISSION ON COLLOID AND SURFACE CHEMISTRY* Subcommittee on Characterization of Porous Solids RECOMMENDATIONS FOR THE CHARACTERIZATION OF POROUS SOLIDS , 2004 .

[67]  M. Hirscher,et al.  A fluorene based covalent triazine framework with high CO2 and H2 capture and storage capacities , 2014 .

[68]  William R. Dichtel,et al.  β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. , 2013, Journal of the American Chemical Society.

[69]  M. H. Haydak,et al.  Electrophoretic Components of the Proteins in Honeybee Larval Food , 1960, Nature.

[70]  K. Harris,et al.  Nitrogen and Hydrogen Adsorption by an Organic Microporous Crystal** , 2009, Angewandte Chemie.

[71]  S. Qiu,et al.  Micropore engineering of carbonized porous aromatic framework (PAF-1) for supercapacitors application. , 2014, Physical chemistry chemical physics : PCCP.

[72]  Jun Liu,et al.  Introduction of π-complexation into porous aromatic framework for highly selective adsorption of ethylene over ethane. , 2014, Journal of the American Chemical Society.

[73]  Xiaoming Liu,et al.  Conjugated microporous polymers as molecular sensing devices: microporous architecture enables rapid response and enhances sensitivity in fluorescence-on and fluorescence-off sensing. , 2012, Journal of the American Chemical Society.

[74]  Linda S. Shimizu,et al.  Absorption properties of a porous organic crystalline apohost formed by a self-assembled bis-urea macrocycle , 2006 .

[75]  Harry R. Allcock,et al.  Phosphonitrilic Compounds. III.1 Molecular Inclusion Compounds of Tris(o-phenylenedioxy)phosphonitrile Trimer , 1964 .

[76]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[77]  S. Nagase,et al.  Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. , 2011, Angewandte Chemie.

[78]  M. Liras,et al.  Conjugated Microporous Polymers Incorporating BODIPY Moieties as Light-Emitting Materials and Recyclable Visible-Light Photocatalysts , 2016 .

[79]  Michael O'Keeffe,et al.  Reticular chemistry of metal-organic polyhedra. , 2008, Angewandte Chemie.

[80]  Michael O'Keeffe,et al.  Reticular chemistry: occurrence and taxonomy of nets and grammar for the design of frameworks. , 2005, Accounts of chemical research.

[81]  K. Han,et al.  Synthesis of porous, nitrogen-doped adsorption/diffusion carbonaceous membranes for efficient CO2 separation. , 2013, Macromolecular rapid communications.

[82]  M. Thorpe,et al.  Eighty years of random networks , 2013 .

[83]  D. Jiang,et al.  Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. , 2015, Nature chemistry.

[84]  Yushan Yan,et al.  Designed synthesis of large-pore crystalline polyimide covalent organic frameworks , 2014, Nature Communications.

[85]  Dan Zhao,et al.  Highly Stable Porous Polymer Networks with Exceptionally High Gas‐Uptake Capacities , 2011, Advanced materials.

[86]  A. Cooper,et al.  Supramolecular engineering of intrinsic and extrinsic porosity in covalent organic cages. , 2011, Journal of the American Chemical Society.

[87]  R. Banerjee,et al.  Enhancement of chemical stability and crystallinity in porphyrin-containing covalent organic frameworks by intramolecular hydrogen bonds. , 2013, Angewandte Chemie.

[88]  T. Maris,et al.  Constructing monocrystalline covalent organic networks by polymerization , 2013, Nature Chemistry.

[89]  G. Veith,et al.  Highly dispersed sulfur in a porous aromatic framework as a cathode for lithium-sulfur batteries. , 2012, Chemical communications.

[90]  James R. McKone,et al.  Superior Charge Storage and Power Density of a Conducting Polymer-Modified Covalent Organic Framework , 2016, ACS central science.

[91]  Michael O’Keeffe,et al.  A crystalline imine-linked 3-D porous covalent organic framework. , 2009, Journal of the American Chemical Society.

[92]  A. Cooper,et al.  Acid- and base-stable porous organic cages: shape persistence and pH stability via post-synthetic "tying" of a flexible amine cage. , 2014, Journal of the American Chemical Society.

[93]  Yali Luo,et al.  Recent development of hypercrosslinked microporous organic polymers. , 2013, Macromolecular rapid communications.

[94]  A. Cooper,et al.  Band gap engineering in fluorescent conjugated microporous polymers , 2011 .

[95]  T. Welberry,et al.  The interpretation and analysis of diffuse scattering using Monte Carlo simulation methods. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[96]  B. Tan,et al.  Solution-processable hypercrosslinked polymers by low cost strategies: a promising platform for gas storage and separation , 2016 .

[97]  Y. Mu,et al.  An Azine-Linked Covalent Organic Framework: Synthesis, Characterization and Efficient Gas Storage. , 2015, Chemistry.

[98]  S. Qiu,et al.  Great Prospects for PAF-1 and its derivatives , 2015 .

[99]  R. Clowes,et al.  Porous Organic Cages for Sulfur Hexafluoride Separation , 2016, Journal of the American Chemical Society.

[100]  Yujian He,et al.  Correction: Conjugated microporous polycarbazole containing tris(2-phenylpyridine)iridium(III) complexes: phosphorescence, porosity, and heterogeneous organic photocatalysis , 2016 .

[101]  David Richeson Euler's Gem: The Polyhedron Formula and the Birth of Topology , 2008 .

[102]  M. Antonietti,et al.  Conjugated porous polymers for energy applications , 2012 .

[103]  I. Langmuir THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. , 1918 .

[104]  Bingbing Liu,et al.  Targeted synthesis of a 3D porous aromatic framework for selective sorption of benzene. , 2010, Chemical communications.

[105]  Jiating He,et al.  Thermodynamics versus kinetics in nanosynthesis. , 2015, Angewandte Chemie.

[106]  Weiqiao Deng,et al.  Extraordinary Capability for Water Treatment Achieved by a Perfluorous Conjugated Microporous Polymer , 2015, Scientific Reports.

[107]  Yinghua Jin,et al.  Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures. , 2015, Journal of the American Chemical Society.

[108]  Xiao Feng,et al.  Conducting metallophthalocyanine 2D covalent organic frameworks: the role of central metals in controlling π-electronic functions. , 2012, Chemical communications.

[109]  W. Wang,et al.  A New Strategy to Microporous Polymers: Knitting Rigid Aromatic Building Blocks by External Cross-Linker , 2011 .

[110]  J. Hupp,et al.  Methane storage in metal-organic frameworks: current records, surprise findings, and challenges. , 2013, Journal of the American Chemical Society.

[111]  Omar M Yaghi,et al.  Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. , 2009, Journal of the American Chemical Society.

[112]  S Bracco,et al.  Methane and carbon dioxide storage in a porous van der Waals crystal. , 2005, Angewandte Chemie.

[113]  S. Xu,et al.  Construction of Covalent Organic Frameworks Bearing Three Different Kinds of Pores through the Heterostructural Mixed Linker Strategy. , 2016, Journal of the American Chemical Society.

[114]  J. Franz,et al.  An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes , 2010 .

[115]  Z. Tian,et al.  Targeted synthesis of an electroactive organic framework , 2011 .

[116]  C. Janiak,et al.  Covalent triazine-based frameworks (CTFs) from triptycene and fluorene motifs for CO2 adsorption , 2016 .

[117]  Takahiko Moteki,et al.  Porous siloxane-organic hybrid with ultrahigh surface area through simultaneous polymerization-destruction of functionalized cubic siloxane cages. , 2011, Journal of the American Chemical Society.

[118]  Sarah J. Haigh,et al.  Synthesis and characterization of composite membranes made of graphene and polymers of intrinsic microporosity , 2016 .

[119]  Ye Yuan,et al.  Porous aromatic frameworks with anion-templated pore apertures serving as polymeric sieves , 2014, Nature Communications.

[120]  Feng Deng,et al.  Targeted synthesis of electroactive porous organic frameworks containing triphenyl phosphine moieties , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[121]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[122]  M. D. Del Pópolo,et al.  Designing and understanding permanent microporosity in liquids. , 2014, Physical chemistry chemical physics : PCCP.

[123]  Stuart J Rowan,et al.  Dynamic covalent chemistry. , 2002, Angewandte Chemie.

[124]  A. Cooper Molecular organic crystals: from barely porous to really porous. , 2012, Angewandte Chemie.

[125]  Renqiang Yang,et al.  Synthesis of covalent triazine-based frameworks with high CO2 adsorption and selectivity , 2015 .

[126]  B. Heisen,et al.  A triazine-based three-directional rigid-rod tecton forms a novel 1D channel structure. , 2007, Chemical communications.

[127]  Shilun Qiu,et al.  Selective adsorption of carbon dioxide by carbonized porous aromatic framework (PAF) , 2012 .

[128]  S. Xu,et al.  One-step construction of two different kinds of pores in a 2D covalent organic framework. , 2014, Journal of the American Chemical Society.

[129]  R. Prins Hydrogen spillover. Facts and fiction. , 2012, Chemical reviews.

[130]  Christian Baerlocher,et al.  Atlas of zeolite framework types: Dedicated to Walter M. Meier , 2007 .

[131]  Yushan Yan,et al.  3D Porous Crystalline Polyimide Covalent Organic Frameworks for Drug Delivery. , 2015, Journal of the American Chemical Society.

[132]  P. Budd,et al.  Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. , 2006, Chemical Society reviews.

[133]  B. Cao,et al.  Electrospun polymer of intrinsic microporosity fibers and their use in the adsorption of contaminants from a nonaqueous system , 2016 .

[134]  Michael O'Keeffe,et al.  Identification of and symmetry computation for crystal nets. , 2003, Acta crystallographica. Section A, Foundations of crystallography.

[135]  F. Švec,et al.  Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage , 2007 .

[136]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[137]  D. Jiang,et al.  Proton conduction in crystalline and porous covalent organic frameworks. , 2016, Nature materials.

[138]  Andrew I. Cooper,et al.  Chemical tuning of CO2 sorption in robust nanoporous organic polymers , 2011 .

[139]  A. Cooper,et al.  Conjugated Microporous Polymers with Rose Bengal Dye for Highly Efficient Heterogeneous Organo-Photocatalysis , 2013 .

[140]  Iris M. Oppel,et al.  Periphery-substituted [4+6] salicylbisimine cage compounds with exceptionally high surface areas: influence of the molecular structure on nitrogen sorption properties. , 2012, Chemistry.

[141]  K. Nishimura,et al.  Multiple-component covalent organic frameworks , 2016, Nature Communications.

[142]  S. Qiu,et al.  Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties , 2014 .

[143]  S. Qiu,et al.  A novel 3D metal-organic framework with the pcu topology constructed from 1,4-diaza-bicyclo[2.2.2]octane-N,N′-dioxide , 2007 .

[144]  A. Cooper,et al.  Microporous organic polymers for carbon dioxide capture , 2011 .

[145]  Bao-hang Han,et al.  Porous Organic Polymers Based on Propeller-Like Hexaphenylbenzene Building Units , 2011 .

[146]  K. Harris,et al.  A triptycene-based polymer of intrinsic microposity that displays enhanced surface area and hydrogen adsorption. , 2007, Chemical communications.

[147]  Watcharop Chaikittisilp,et al.  Hybrid porous materials with high surface area derived from bromophenylethenyl-functionalized cubic siloxane-based building units. , 2010, Chemistry.

[148]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[149]  A. Cooper,et al.  Microporous Organic Polymers for Methane Storage , 2008 .

[150]  A. Neimark,et al.  Capillary Hysteresis in Nanopores: Theoretical and Experimental Studies of Nitrogen Adsorption on MCM-41 , 1995 .

[151]  S Torquato,et al.  Optimal packings of superdisks and the role of symmetry. , 2007, Physical review letters.

[152]  Christian J. Doonan,et al.  Crystalline covalent organic frameworks with hydrazone linkages. , 2011, Journal of the American Chemical Society.

[153]  Hong Xia,et al.  Enhanced carbon dioxide uptake by metalloporphyrin-based microporous covalent triazine framework , 2013 .

[154]  S. Dai,et al.  A superacid-catalyzed synthesis of porous membranes based on triazine frameworks for CO2 separation. , 2012, Journal of the American Chemical Society.

[155]  A. Cooper,et al.  Porous, Fluorescent, Covalent Triazine‐Based Frameworks Via Room‐Temperature and Microwave‐Assisted Synthesis , 2012, Advanced materials.

[156]  E. Teller,et al.  ADSORPTION OF GASES IN MULTIMOLECULAR LAYERS , 1938 .

[157]  Michael O'Keeffe,et al.  Crystal nets as graphs: Terminology and definitions , 2005 .

[158]  Dingcai Wu,et al.  Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage , 2015, Scientific Reports.

[159]  Hong Xu,et al.  Designed synthesis of double-stage two-dimensional covalent organic frameworks , 2015, Scientific Reports.

[160]  W. Zachariasen,et al.  THE ATOMIC ARRANGEMENT IN GLASS , 1932 .

[161]  C. Ochsenfeld,et al.  A tunable azine covalent organic framework platform for visible light-induced hydrogen generation , 2015, Nature Communications.

[162]  S. Qiu,et al.  Ultrahigh iodine adsorption in porous organic frameworks , 2014 .

[163]  V. Davankov,et al.  Macronet isoporous gels through crosslinking of dissolved polystyrene , 2007 .

[164]  Abbie Trewin,et al.  Amorphous PAF-1: Guiding the Rational Design of Ultraporous Materials , 2014 .

[165]  Valentin D. Mihailetchi,et al.  Device Physics of Polymer:Fullerene Bulk Heterojunction Solar Cells , 2007 .

[166]  Rebecca L. Greenaway,et al.  Liquids with permanent porosity , 2015, Nature.

[167]  M. Hirscher,et al.  Nitrogen-Rich Covalent Triazine Frameworks as High-Performance Platforms for Selective Carbon Capture and Storage , 2015 .

[168]  S. Irle,et al.  An n-channel two-dimensional covalent organic framework. , 2011, Journal of the American Chemical Society.

[169]  S. Dai,et al.  Charged Porous Polymers using a Solid C-O Cross-Coupling Reaction. , 2015, Chemistry.

[170]  Iris M. Oppel,et al.  Rational construction of an extrinsic porous molecular crystal with an extraordinary high specific surface area. , 2012, Angewandte Chemie.

[171]  A. Cooper,et al.  Porous Organic Cage Thin Films and Molecular‐Sieving Membranes , 2016, Advanced materials.

[172]  Stephan Irle,et al.  High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. , 2012, Angewandte Chemie.

[173]  Andrew I. Cooper,et al.  Conjugated Microporous Polymers , 2009 .

[174]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[175]  S. Qiu,et al.  Porous aromatic frameworks: Synthesis, structure and functions , 2013 .

[176]  R. Krishna,et al.  Two-Dimensional Covalent Organic Frameworks for Carbon Dioxide Capture through Channel-Wall Functionalization , 2015, Angewandte Chemie.

[177]  S. Dai,et al.  Advancing polymers of intrinsic microporosity by mechanochemistry , 2015 .

[178]  Arne Thomas,et al.  Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene , 2013 .

[179]  L. Baldwin,et al.  Luminescent Covalent Organic Frameworks Containing a Homogeneous and Heterogeneous Distribution of Dehydrobenzoannulene Vertex Units. , 2016, Journal of the American Chemical Society.

[180]  D. Cao,et al.  Synthesis of luminescent covalent-organic polymers for detecting nitroaromatic explosives and small organic molecules. , 2012, Macromolecular rapid communications.

[181]  H. Allcock Phosphonitrilic Compounds. II.1 Reactions of Phosphonitrilic Chlorides with Catechol and Triethylamine , 1964 .

[182]  L. Wojtas,et al.  Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker. , 2012, Angewandte Chemie.

[183]  Ming Dong,et al.  Thioether-Based Fluorescent Covalent Organic Framework for Selective Detection and Facile Removal of Mercury(II). , 2016, Journal of the American Chemical Society.

[184]  A. Cairns,et al.  Structural Disorder in Molecular Framework Materials , 2013 .

[185]  A. Nagai,et al.  An azine-linked covalent organic framework. , 2013, Journal of the American Chemical Society.

[186]  Jean M. J. Fréchet,et al.  Preparation of Size-Selective Nanoporous Polymer Networks of Aromatic Rings: Potential Adsorbents for Hydrogen Storage , 2008 .

[187]  Guipeng Yu,et al.  Phthalazinone structure-based covalent triazine frameworks and their gas adsorption and separation properties , 2016 .

[188]  Buyin Li,et al.  Tailoring the pore size of hypercrosslinked polymers , 2011 .

[189]  O. Terasaki,et al.  Weaving of organic threads into a crystalline covalent organic framework , 2016, Science.

[190]  A. Cooper,et al.  Soluble conjugated microporous polymers. , 2012, Angewandte Chemie.

[191]  T. E. Reich,et al.  A 2D mesoporous imine-linked covalent organic framework for high pressure gas storage applications. , 2013, Chemistry.

[192]  V. Davankov,et al.  From a Dissolved Polystyrene Coil to an Intramolecularly-Hyper-Cross-Linked “Nanosponge” , 1996 .

[193]  Guixia Liu,et al.  A Porous Aromatic Framework Constructed from Benzene Rings Has a High Adsorption Capacity for Perfluorooctane Sulfonate , 2016, Scientific Reports.

[194]  P. Sozzani,et al.  Molecular rotors in porous organic frameworks. , 2014, Angewandte Chemie.

[195]  Wei Wang,et al.  Constructing Crystalline Covalent Organic Frameworks from Chiral Building Blocks. , 2016, Journal of the American Chemical Society.

[196]  H. Bai,et al.  Massive preparation of pitch-based organic microporous polymers for gas storage. , 2016, Chemical communications.

[197]  Shilun Qiu,et al.  Synthesis of copolymerized porous organic frameworks with high gas storage capabilities at both high and low pressures. , 2014, Chemical communications.

[198]  A. Cooper,et al.  Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents. , 2012, Journal of the American Chemical Society.

[199]  T. R. Welberry,et al.  Diffuse scattering and partial disorder in complex structures , 2014, IUCrJ.

[200]  E. Klontzas,et al.  Hydrogen Storage in 3D Covalent Organic Frameworks. A Multiscale Theoretical Investigation , 2008 .

[201]  A. Cooper,et al.  High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry , 2010 .

[202]  D. Jiang,et al.  Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antenna. , 2010, Journal of the American Chemical Society.

[203]  A. Cooper,et al.  Porous organic cages: soluble, modular and molecular pores , 2016 .

[204]  S. Dai,et al.  New Tricks for Old Molecules: Development and Application of Porous N‐doped, Carbonaceous Membranes for CO2 Separation , 2013, Advanced materials.

[205]  Shengming Xie,et al.  A chiral porous organic cage for molecular recognition using gas chromatography. , 2016, Analytica chimica acta.

[206]  Wei Wang,et al.  Covalent organic frameworks (COFs): from design to applications. , 2013, Chemical Society reviews.

[207]  A. Cooper,et al.  Molecular dynamics simulations of gas selectivity in amorphous porous molecular solids. , 2013, Journal of the American Chemical Society.

[208]  S. Dai,et al.  Hypercrosslinked phenolic polymers with well-developed mesoporous frameworks. , 2015, Angewandte Chemie.

[209]  Simon J L Billinge,et al.  Beyond crystallography: the study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. , 2004, Chemical communications.

[210]  Sang Soo Han,et al.  Adsorption mechanism and uptake of methane in covalent organic frameworks: theory and experiment. , 2010, The journal of physical chemistry. A.

[211]  C. Tang Two‐layer organic photovoltaic cell , 1986 .

[212]  S. Kazarian,et al.  Swellable, water- and acid-tolerant polymer sponges for chemoselective carbon dioxide capture. , 2014, Journal of the American Chemical Society.

[213]  Guiqing Lin,et al.  A Pyrene-Based, Fluorescent Three-Dimensional Covalent Organic Framework. , 2016, Journal of the American Chemical Society.

[214]  R. Rathore,et al.  Preparation of a tetraphenylethylene-based emitter: synthesis, structure and optoelectronic properties of tetrakis(pentaphenylphenyl)ethylene. , 2010, Chemical communications.

[215]  Yuguang Ma,et al.  π-Conjugated Microporous Polymer Films: Designed Synthesis, Conducting Properties, and Photoenergy Conversions , 2015, Angewandte Chemie.

[216]  A. Cooper,et al.  Hydrogen adsorption in microporous hypercrosslinked polymers. , 2006, Chemical communications.

[217]  S. Wan,et al.  A belt-shaped, blue luminescent, and semiconducting covalent organic framework. , 2008, Angewandte Chemie.

[218]  V. Valtchev,et al.  Fabrication of COF-MOF Composite Membranes and Their Highly Selective Separation of H2/CO2. , 2016, Journal of the American Chemical Society.

[219]  Markus Antonietti,et al.  Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. , 2008, Angewandte Chemie.

[220]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[221]  A. Cooper,et al.  Post-synthetic modification of conjugated microporous polymers , 2014 .

[222]  P. Gamez,et al.  The s-triazine ring, a remarkable unit to generate supramolecular interactions , 2007 .

[223]  A. Nagai,et al.  Conjugated microporous polymers: design, synthesis and application. , 2013, Chemical Society reviews.

[224]  Dingcai Wu,et al.  Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. , 2015, Angewandte Chemie.

[225]  William R. Dichtel,et al.  Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. , 2010, Nature chemistry.

[226]  C. Colina,et al.  Atomistic Structure Generation and Gas Adsorption Simulations of Microporous Polymer Networks , 2011 .

[227]  B. Kariuki,et al.  The Synthesis of Organic Molecules of Intrinsic Microporosity Designed to Frustrate Efficient Molecular Packing , 2016, Chemistry.

[228]  T. Heine,et al.  Highly Emissive Covalent Organic Frameworks. , 2016, Journal of the American Chemical Society.

[229]  Ben Zhong Tang,et al.  Aggregation-induced emission: phenomenon, mechanism and applications. , 2009, Chemical communications.

[230]  G. Zhu,et al.  Construction and adsorption properties of porous aromatic frameworks via AlCl3-triggered coupling polymerization , 2014 .

[231]  Heping Ma,et al.  Construction and sorption properties of pyrene-based porous aromatic frameworks , 2013 .

[232]  N. McKeown,et al.  Heme-Like Coordination Chemistry Within Nanoporous Molecular Crystals , 2010, Science.

[233]  J. Hradil,et al.  Styrene–divinylbenzene copolymers post-crosslinked with tetrachloromethane , 1998 .

[234]  Michael O'Keeffe,et al.  Frameworks for Extended Solids: Geometrical Design Principles , 2000 .

[235]  Alexander V. Neimark,et al.  Density functional theory methods for characterization of porous materials , 2013 .

[236]  S. Irle,et al.  Rational design of crystalline supermicroporous covalent organic frameworks with triangular topologies , 2015, Nature Communications.

[237]  K. Harris,et al.  Triptycene-based polymers of intrinsic microporosity: organic materials that can be tailored for gas adsorption , 2010 .

[238]  Hasmukh A. Patel,et al.  Noninvasive functionalization of polymers of intrinsic microporosity for enhanced CO2 capture. , 2012, Chemical communications.

[239]  Pierre Fayon,et al.  Formation mechanism of ultra porous framework materials. , 2016, Physical chemistry chemical physics : PCCP.

[240]  Neil L. Campbell,et al.  Rapid Microwave Synthesis and Purification of Porous Covalent Organic Frameworks , 2009 .

[241]  Buyin Li,et al.  Catalyzed hydrogen spillover for hydrogen storage on microporous organic polymers , 2012 .

[242]  Z. Stachurski,et al.  Geometry and Topology of Structure in Amorphous Solids , 2011 .

[243]  Yu Han,et al.  A perfluorinated covalent triazine-based framework for highly selective and water–tolerant CO2 capture , 2013 .

[244]  Shilun Qiu,et al.  Ultrahigh Gas Storage both at Low and High Pressures in KOH-Activated Carbonized Porous Aromatic Frameworks , 2013, Scientific Reports.

[245]  J. Osypiuk,et al.  Modification of porous poly(styrene-divinylbenzene) beads by friedel-crafts reaction , 2001 .

[246]  I. Langmuir THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS , 1917 .

[247]  Jürg Hulliger,et al.  Reversible sorption of nitrogen and xenon gas by the guest-free zeolite tris(o-phenylenedioxy)cyclotriphosphazene (TPP) , 2006 .

[248]  A. Cooper,et al.  Triply interlocked covalent organic cages. , 2010, Nature chemistry.

[249]  A. Cooper,et al.  Functional conjugated microporous polymers: from 1,3,5-benzene to 1,3,5-triazine , 2012 .

[250]  N. McKeown Polymers of Intrinsic Microporosity , 2009 .

[251]  Shengming Xie,et al.  Homochiral Porous Organic Cage with High Selectivity for the Separation of Racemates in Gas Chromatography. , 2015, Analytical chemistry.

[252]  Markus Antonietti,et al.  From microporous regular frameworks to mesoporous materials with ultrahigh surface area: dynamic reorganization of porous polymer networks. , 2008, Journal of the American Chemical Society.

[253]  Subi J. George,et al.  Dynamic, conjugated microporous polymers: visible light harvesting via guest-responsive reversible swelling. , 2016, Physical chemistry chemical physics : PCCP.

[254]  M. Tafipolsky,et al.  An accurate force field model for the strain energy analysis of the covalent organic framework COF-102. , 2008, Journal of the American Chemical Society.

[255]  S. Wan,et al.  A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. , 2009, Angewandte Chemie.

[256]  B. Alston,et al.  Porosity-engineered carbons for supercapacitive energy storage using conjugated microporous polymer precursors , 2016 .

[257]  M. Antonietti,et al.  Rational Extension of the Family of Layered, Covalent, Triazine‐Based Frameworks with Regular Porosity , 2010, Advanced materials.

[258]  P. Budd,et al.  Porphyrin-based nanoporous network polymers. , 2002, Chemical communications.

[259]  A. Cooper,et al.  Synthesis of COF-5 using microwave irradiation and conventional solvothermal routes , 2010 .

[260]  Y. Ko,et al.  Porphyrin Boxes: Rationally Designed Porous Organic Cages. , 2015, Angewandte Chemie.

[261]  S. Makhseed,et al.  Hydrogen adsorption in microporous organic framework polymer. , 2008, Chemical communications.

[262]  Buyin Li,et al.  Highly Dispersed Pd Catalyst Locked in Knitting Aryl Network Polymers for Suzuki–Miyaura Coupling Reactions of Aryl Chlorides in Aqueous Media , 2012, Advanced materials.

[263]  Yushan Yan,et al.  3D microporous base-functionalized covalent organic frameworks for size-selective catalysis. , 2014, Angewandte Chemie.

[264]  Piero Sozzani,et al.  A Porous Crystalline Molecular Solid Explored by Hyperpolarized Xenon , 2000 .

[265]  S. Dai,et al.  Porous liquids: a promising class of media for gas separation. , 2015, Angewandte Chemie.

[266]  T. Heine,et al.  On the reticular construction concept of covalent organic frameworks , 2010, Beilstein journal of nanotechnology.

[267]  A. Slawin,et al.  Porous organic cages. , 2009, Nature materials.

[268]  Feng Deng,et al.  Gas storage in porous aromatic frameworks (PAFs) , 2011 .

[269]  Hui Wang,et al.  A polycationic covalent organic framework: a robust adsorbent for anionic dye pollutants , 2016 .

[270]  Chongli Zhong,et al.  Covalent Triazine-Based Frameworks with Ultramicropores and High Nitrogen Contents for Highly Selective CO2 Capture. , 2016, Environmental science & technology.

[271]  R. Mozzi,et al.  The structure of vitreous silica , 1969 .

[272]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[273]  Gang Chen,et al.  Preparation of porous aromatic framework/ionic liquid hybrid composite coated solid-phase microextraction fibers and their application in the determination of organochlorine pesticides combined with GC-ECD detection. , 2016, The Analyst.

[274]  David Olson,et al.  Atlas of Zeolite Framework Types , 2007 .

[275]  Buyin Li,et al.  Multifunctional microporous organic polymers , 2014 .

[276]  Neil L. Campbell,et al.  Conjugated microporous poly(phenylene butadiynylene)s. , 2008, Chemical communications.

[277]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[278]  William R. Dichtel,et al.  Mechanistic studies of two-dimensional covalent organic frameworks rapidly polymerized from initially homogenous conditions. , 2014, Journal of the American Chemical Society.

[279]  Reiner Sebastian Sprick,et al.  Tunable organic photocatalysts for visible-light-driven hydrogen evolution. , 2015, Journal of the American Chemical Society.

[280]  Hong Xia,et al.  A 2D azine-linked covalent organic framework for gas storage applications. , 2014, Chemical communications.