TheL∞-norm of theL2-spline projector is bounded independently of the knot sequence: A proof of de Boor's conjecture

[1]  Alexei Shadrin On Lp-Boundedness of the L2-Projector onto Splines , 1994 .

[2]  A Yu Shadrin,et al.  ON THE APPROXIMATION OF FUNCTIONS BY INTERPOLATING SPLINES DEFINED ON NONUNIFORM NETS , 1992 .

[3]  R. Jia _{∞}-boundedness of ₂-projections on splines for a multiple geometric mesh , 1987 .

[4]  R. Jia L ∞ -Boundedness of L 2 -Projections on Splines for a Multiple Geometric Mesh , 1987 .

[5]  Boris Mityagin,et al.  Quadratic pencils and least-squares piecewise-polynomial approximation , 1983 .

[6]  K. Höllig L∞-boundedness of L2-projections on splines for a geometric mesh , 1981 .

[7]  J. Kozak,et al.  On the generalized Euler-Frobenius polynomial , 1981 .

[8]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[9]  K. I. Oskolkow The upper bound of the norms of orthogonal projections onto subspaces of polygonal , 1979 .

[10]  S. Demko Inverses of Band Matrices and Local Convergence of Spline Projections , 1977 .

[11]  Carl de Boor,et al.  A bound on the _{∞}-norm of ₂-approximation by splines in terms of a global mesh ratio , 1976 .

[12]  I. J. Schoenberg,et al.  Cardinal Interpolation and Spline Functions VIII. The Budan-Fourier Theorem for Splines and Applications. , 1976 .

[13]  C. D. Boor On bounding spline interpolation , 1975 .

[14]  J. Douglas,et al.  Optimal _{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems , 1975 .

[15]  J. Douglas,et al.  The stability inLq of theL2-projection into finite element function spaces , 1974 .

[16]  Jean Descloux,et al.  On Finite Element Matrices , 1972 .

[17]  A theorem on B-splines , 1972 .

[18]  Carl de Boor,et al.  On the convergence of odd-degree spline interpolation , 1968 .

[19]  Z. Ciesielski Properties of the orthonormal Franklin system, II , 1963 .

[20]  I. J. Schoenberg Zur Abzählung der reellen Wurzeln algebraischer Gleichungen , 1934 .