"Frizzy" aggregation genes of the gliding bacterium Myxococcus xanthus show sequence similarities to the chemotaxis genes of enteric bacteria.

The frz genes of Myxococcus xanthus are necessary for proper aggregation of cells to form fruiting bodies. Mutations in the frz genes affect the frequency with which individual cells reverse their direction of movement. We have subcloned and determined the nucleotide sequence of three of the frz genes. From the sequence we predict three open reading frames corresponding to frzA, frzB, and frzCD. The putative FrzA protein (17,094 Da) exhibits 28.1% amino acid identity with the CheW protein of Salmonella typhimurium. The putative FrzCD protein (43,571 Da) contains a region of about 250 amino acids which is similar to the C-terminal portions of the methyl-accepting chemotaxis receptor proteins of the enteric bacteria. FrzCD also contains a region with potentially significant similarity to the DNA-binding region of the Bacillus subtilis sigma 43. The putative FrzB protein (12,066 Da) shares no significant identity with known chemotaxis proteins. The sequence similarities between the putative Frz proteins and the chemotaxis proteins of the enteric bacteria strongly support the hypothesis that the frz genes define a system of signal transduction analogous to the enterobacterial chemotaxis systems.