The effect of lithium loadings on anode to the voltage drop during charge and discharge of Li-ion capacitors

[1]  Kerry N. Allahar,et al.  Transmission Line Modeling of EIS Data for a Mg-Rich Primer on AA 2024-T3 , 2010, ECS Transactions.

[2]  Jim P. Zheng,et al.  Strategies to optimize lithium-ion supercapacitors achieving high-performance: Cathode configurations, lithium loadings on anode, and types of separator , 2014 .

[3]  Montse Casas-Cabanas,et al.  Considerations about the influence of the structural and electrochemical properties of carbonaceous materials on the behavior of lithium-ion capacitors , 2014 .

[4]  Mei Yang,et al.  Pre-lithiated graphene nanosheets as negative electrode materials for Li-ion capacitors with high power and energy density , 2014 .

[5]  Jim P. Zheng,et al.  Development and characterization of Li-ion capacitor pouch cells , 2014 .

[6]  S. Ogale,et al.  Improving the energy density of Li-ion capacitors using polymer-derived porous carbons as cathode , 2014 .

[7]  Jin Zhang,et al.  Effect of pre-lithiation degrees of mesocarbon microbeads anode on the electrochemical performance of lithium-ion capacitors , 2014 .

[8]  Jim P. Zheng,et al.  Comparative Study of the Power and Cycling Performance for Advanced Lithium-Ion Capacitors with Various Carbon Anodes , 2014 .

[9]  Chong Min Koo,et al.  Effect of electronic spatial extents (ESE) of ions on overpotential of lithium ion capacitors , 2014 .

[10]  Patricia H. Smith,et al.  Lithium-ion capacitors: Electrochemical performance and thermal behavior , 2013 .

[11]  Andrea Balducci,et al.  A study about the use of carbon coated iron oxide-based electrodes in lithium-ion capacitors , 2013 .

[12]  M. Winter,et al.  On the cycling stability of lithium-ion capacitors containing soft carbon as anodic material , 2013 .

[13]  B. Landi,et al.  Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). , 2013, Nano letters.

[14]  Jim P. Zheng,et al.  The Effect of Cathode and Anode Potentials on the Cycling Performance of Li-Ion Capacitors , 2013 .

[15]  Jim P. Zheng,et al.  Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes , 2012 .

[16]  A. Pandolfo,et al.  Evaluation of lithium-ion capacitors assembled with pre-lithiated graphite anode and activated carbon cathode , 2012 .

[17]  Martin Winter,et al.  On the Use of Soft Carbon and Propylene Carbonate-Based Electrolytes in Lithium-Ion Capacitors , 2012 .

[18]  Young-Geun Lim,et al.  Effect of carbon types on the electrochemical properties of negative electrodes for Li-ion capacitor , 2011 .

[19]  Adriyan S Milev,et al.  Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors , 2011 .

[20]  Martin Winter,et al.  Electrochemical double layer capacitor and lithium-ion capacitor based on carbon black , 2011 .

[21]  Yangxing Li,et al.  Effective enhancement of lithium-ion battery performance using SLMP , 2011 .

[22]  Martin Winter,et al.  Composite LiFePO 4/AC high rate performance electrodes for Li-ion capacitors , 2011 .

[23]  T. S. Bhatti,et al.  A review on electrochemical double-layer capacitors , 2010 .

[24]  M. Yoshio,et al.  Effect of water contamination in the organic electrolyte on the performance of activated carbon/graphite capacitors , 2010 .

[25]  Jim P. Zheng,et al.  High Energy Density Electrochemical Capacitors Without Consumption of Electrolyte , 2009 .

[26]  Hidetaka Konno,et al.  Application of Si–C–O glass-like compounds as negative electrode materials for lithium hybrid capacitors , 2009 .

[27]  Masayuki Morita,et al.  Analyses of Capacity Loss and Improvement of Cycle Performance for a High-Voltage Hybrid Electrochemical Capacitor , 2007 .

[28]  M. Morita,et al.  Improvement in Cycle Performance of a High-Voltage Hybrid Electrochemical Capacitor , 2007 .

[29]  M. Lain,et al.  A prelithiated carbon anode for lithium-ion battery applications , 2006 .

[30]  R. Kanno,et al.  Structure Characterization and Lithiation Mechanism of Nongraphitized Carbon for Lithium Secondary Batteries , 2006 .

[31]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[32]  Jim P. Zheng,et al.  Theoretical Energy Density for Electrochemical Capacitors with Intercalation Electrodes , 2005 .

[33]  M. Lain,et al.  A lithium ion cell containing a non-lithiated cathode , 2005 .

[34]  Rik W. De Doncker,et al.  Impedance measurements on lead–acid batteries for state-of-charge, state-of-health and cranking capability prognosis in electric and hybrid electric vehicles , 2005 .

[35]  Jim P. Zheng,et al.  The Limitations of Energy Density of Battery/Double-Layer Capacitor Asymmetric Cells , 2003 .

[36]  Tao Zheng,et al.  An Asymmetric Hybrid Nonaqueous Energy Storage Cell , 2001 .

[37]  D. Aurbach,et al.  Application of finite-diffusion models for the interpretation of chronoamperometric and electrochemical impedance responses of thin lithium insertion V2O5 electrodes , 2001 .

[38]  S. Rodrigues,et al.  AC impedance and state-of-charge analysis of a sealed lithium-ion rechargeable battery , 1999 .

[39]  L. Dao,et al.  Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution , 1999 .

[40]  Doron Aurbach,et al.  Solid‐State Electrochemical Kinetics of Li‐Ion Intercalation into Li1 − x CoO2: Simultaneous Application of Electroanalytical Techniques SSCV, PITT, and EIS , 1999 .

[41]  E. Karden,et al.  Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification , 1997 .