Theoretical investigation of tensile strained GeSn waveguide with Si₃N₄ liner stressor for mid-infrared detector and modulator applications.

We theoretically investigate a tensile strained GeSn waveguide integrated with Si₃N₄ liner stressor for the applications in mid-infrared (MIR) detector and modulator. A substantial tensile strain is induced in a 1 × 1 μm² GeSn waveguide by the expansion of 500 nm Si₃N₄ liner stressor and the contour plots of strain are simulated by the finite element simulation. Under the tensile strain, the direct bandgap E(G,Γ) of GeSn is significantly reduced by lowering the Γ conduction valley in energy and lifting of degeneracy of valence bands. Absorption coefficients of tensile strained GeSn waveguides with different Sn compositions are calculated. As the Si₃N₄ liner stressor expands by 1%, the cut-off wavelengths of tensile strained Ge(0.97)Sn(0.03), Ge(0.95)Sn(0.05), and Ge(0.90)Sn(0.10) waveguide photodetectors are extended to 2.32, 2.69, and 4.06 μm, respectively. Tensile strained Ge(0.90)Sn(0.10) waveguide electro-absorption modulator based on Franz-Keldysh (FK) effect is demonstrated in theory. External electric field dependence of cut-off wavelength and propagation loss of tensile strained Ge(0.90)Sn(0.10) waveguide is observed, due to the FK effect.

[1]  Yuliya Semenova,et al.  Germanium microsphere high-Q resonator. , 2012, Optics letters.

[2]  Krishna C. Saraswat,et al.  7-nm FinFET CMOS Design Enabled by Stress Engineering Using Si, Ge, and Sn , 2014, IEEE Transactions on Electron Devices.

[3]  Y. Yeo,et al.  High-mobility germanium-tin (GeSn) P-channel MOSFETs featuring metallic source/drain and sub-370 °C process modules , 2011, 2011 International Electron Devices Meeting.

[4]  Jurgen Michel,et al.  High performance, waveguide integrated Ge photodetectors. , 2007, Optics express.

[5]  John Tolle,et al.  Compliant tin-based buffers for the growth of defect-free strained heterostructures on silicon , 2006 .

[6]  K. Saraswat,et al.  Material characterization of high Sn-content, compressively-strained GeSn epitaxial films after rapid thermal processing , 2013 .

[7]  Guy Fishman,et al.  Infrared absorption in Si/Si1-xGex/Si quantum wells , 1999 .

[8]  David J. Lockwood,et al.  Silicon Photonics: CMOS Going Optical [Scanning the Issue] , 2009 .

[9]  Yasuhiko Ishikawa,et al.  Deformation potential constants of biaxially tensile stressed Ge epitaxial films on Si ( 100 ) , 2004 .

[10]  J. Brouillet,et al.  Low temperature growth of high crystallinity GeSn on amorphous layers for advanced optoelectronics , 2013 .

[11]  R. Soref,et al.  The Past, Present, and Future of Silicon Photonics , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[12]  Isabelle Sagnes,et al.  Tensile-strained germanium microdisks , 2013 .

[13]  Ying Luo,et al.  30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide. , 2011, Optics express.

[14]  A. E. Lim,et al.  Ge waveguide photodetectors with responsivity roll-off beyond 1620 nm using localized stressor , 2012, OFC/NFOEC.

[15]  M. Morse,et al.  31 GHz Ge n-i-p waveguide photodetectors on Silicon-on-Insulator substrate. , 2007, Optics express.

[16]  A. Zunger,et al.  Predicted band-gap pressure coefficients of all diamond and zinc-blende semiconductors: Chemical trends , 1999 .

[17]  Richard A. Soref,et al.  Design of an electrically pumped SiGeSn/GeSn/SiGeSn double-heterostructure midinfrared laser , 2010 .

[18]  Habib Bouchriha,et al.  Infrared absorption in S i / S i 1 − x Ge x / Si quantum wells , 2001 .

[19]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[20]  J. Tolle,et al.  Direct gap electroluminescence from Si/Ge1−ySny p-i-n heterostructure diodes , 2011 .

[21]  Shu-Wei Chang,et al.  Strain-Balanced ${\rm Ge}_{z}{\rm Sn}_{1-z}\hbox{--}{\rm Si}_{x}{\rm Ge}_{y}{\rm Sn}_{1-x-y}$ Multiple-Quantum-Well Lasers , 2010, IEEE Journal of Quantum Electronics.

[22]  R Loo,et al.  GeSn/Ge heterostructure short-wave infrared photodetectors on silicon. , 2012, Optics express.

[23]  David J. Smith,et al.  Band Gap-Engineered Group-IV Optoelectronic Semiconductors, Photodiodes and Prototype Photovoltaic Devices , 2013 .

[24]  Kazumi Wada,et al.  Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates , 2000 .

[25]  Krishna C. Saraswat,et al.  Achieving direct band gap in germanium through integration of Sn alloying and external strain , 2013 .

[26]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[27]  M. Chandrasekhar,et al.  Effects of uniaxial stress on the electroreflectance spectrum of Ge and GaAs , 1977 .

[28]  G. Capellini,et al.  Tensile Ge microstructures for lasing fabricated by means of a silicon complementary metal-oxide-semiconductor process. , 2014, Optics express.

[29]  Jörg Schulze,et al.  Franz-Keldysh effect in GeSn pin photodetectors , 2014 .

[30]  Pao Tai Lin,et al.  Mid-infrared materials and devices on a Si platform for optical sensing , 2014, Science and technology of advanced materials.

[31]  Qiming Wang,et al.  GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.

[32]  James S. Harris,et al.  Increased photoluminescence of strain-reduced, high-Sn composition Ge1−xSnx alloys grown by molecular beam epitaxy , 2011 .

[33]  Richard A. Soref,et al.  Group IV photonics for the mid infrared , 2013, Photonics West - Optoelectronic Materials and Devices.

[34]  L M Nguyen,et al.  Local bandgap control of germanium by silicon nitride stressor. , 2013, Optics express.

[35]  David Smith,et al.  Next generation of Ge1−ySny (y = 0.01-0.09) alloys grown on Si(100) via Ge3H8 and SnD4: Reaction kinetics and tunable emission , 2012 .

[36]  Peng Huei Lim,et al.  Enhanced photoluminescence from germanium-based ring resonators , 2008 .

[37]  R. Kotlyar,et al.  Bandgap engineering of group IV materials for complementary n and p tunneling field effect transistors , 2013 .