Ice-core record of atmospheric methane over the past 160,000 years

Methane measurements along the Vostok ice core reveal substantial changes over the past 160,000 years which are associated with climate fluctuations. These results point to changes in sources of methane and also show that methane has probably contributed, like carbon dioxide, to glacial-interglacial temperature changes.

[1]  J. Jouzel,et al.  A 150,000-year climatic record from Antarctic ice , 1985, Nature.

[2]  C. Lorius,et al.  Vostok ice core provides 160,000-year record of atmospheric CO2 , 1987, Nature.

[3]  B. Svensson Different Temperature Optima for Methane Formation When Enrichments from Acid Peat Are Supplemented with Acetate or Hydrogen , 1984, Applied and environmental microbiology.

[4]  M. Khalil,et al.  Atmospheric methane in the recent and ancient atmospheres Concentrations, trends, and interhemispheric gradient , 1984 .

[5]  A. Thompson,et al.  Sensitivity of tropospheric oxidants to global chemical and climate change , 1989 .

[6]  J. White,et al.  The abrupt termination of the Younger Dryas climate event , 1989, Nature.

[7]  M. Khalil,et al.  Climate-induced feedbacks for the global cycles of methane and nitrous oxide , 1989 .

[8]  W. Dansgaard,et al.  Oxygen Isotope Profiles through the Antarctic and Greenland Ice Sheets , 1972, Nature.

[9]  J. D. Hays,et al.  Age Dating and the Orbital Theory of the Ice Ages: Development of a High-Resolution 0 to 300,000-Year Chronostratigraphy , 1987, Quaternary Research.

[10]  M. Rossignol-Strick,et al.  After the deluge: Mediterranean stagnation and sapropel formation , 1982, Nature.

[11]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[12]  N. Barkov,et al.  Aerosol concentrations over the last climatic cycle (160 kyr) from an Antarctic ice core , 1987, Nature.

[13]  Andreas Volz,et al.  Evaluation of the Montsouris series of ozone measurements made in the nineteenth century , 1988, Nature.

[14]  J. Hansen,et al.  Greenhouse Effects due to Man-Made Perturbations of Trace Gases , 1976, Science.

[15]  J. Jouzel,et al.  Vostok ice core: a continuous isotope temperature record over the last climatic cycle (160,000 years) , 1987, Nature.

[16]  R. Cicerone,et al.  Biogeochemical aspects of atmospheric methane , 1988 .

[17]  J. Guiot,et al.  A 140,000-year continental climate reconstruction from two European pollen records , 1989, Nature.

[18]  André Berger,et al.  Milankovitch Theory and climate , 1988 .

[19]  M. Legrand,et al.  Vostok (Antarctica) ice core: Atmospheric chemistry changes over the last climatic cycle (160,000 years) , 1988 .

[20]  D. I. Sebacher,et al.  Atmospheric methane sources: Alaskan tundra bogs, an alpine fen, and a subarctic boreal marsh , 1986 .

[21]  H. Oeschger,et al.  Increase of Atmospheric Methane Recorded in Antarctic Ice Core , 1985, Science.

[22]  M. Khalil,et al.  Secular trends of atmospheric methane (CH4) , 1982 .

[23]  J. Jouzel,et al.  A 30,000-yr isotope climatic record from Antarctic ice , 1979, Nature.

[24]  J. Kutzbach,et al.  Monsoon variability over the past 150,000 years , 1987 .

[25]  D. Raynaud,et al.  Climatic and CH4 cycle implications of glacial–interglacial CH4 change in the Vostok ice core , 1988, Nature.

[26]  Inez Y. Fung,et al.  Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources , 1987 .

[27]  W. Prell,et al.  Coherent response of Arabian Sea upwelling and pollen transport to late Quaternary monsoonal winds , 1986, Nature.

[28]  M. Khalil,et al.  Atmospheric methane: Trends over the last 10,000 years , 1987 .

[29]  H. Oeschger,et al.  Methane concentration in the glacial atmosphere was only half that of the preindustrial Holocene , 1988, Nature.

[30]  Paul J. Crutzen,et al.  Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions , 1989 .

[31]  D. Rind,et al.  Terrestrial Conditions at the Last Glacial Maximum and CLIMAP Sea-Surface Temperature Estimates: Are They Consistent? , 1985, Quaternary Research.

[32]  J. Jouzel,et al.  Palaeoclimatological and chronological implications of the Vostok core dust record , 1990, Nature.

[33]  J. Pyle,et al.  The water vapour budget of the stratosphere studied using LIMS and SAMS satellite data , 1986 .

[34]  Taro Takahashi,et al.  Climate processes and climate sensitivity , 1984 .

[35]  W. Broecker,et al.  The impact of cold North Atlantic sea surface temperatures on climate: implications for the Younger Dryas cooling (11–10 k) , 1986 .

[36]  M. Rossignol-Strick African monsoons, an immediate climate response to orbital insolation , 1983, Nature.

[37]  R. Charlson,et al.  Climate forcing implications from Vostok ice-core sulphate data , 1988, Nature.

[38]  J. Duplessy,et al.  Climatic conditions deduced from a 150-kyr oxygen isotope–pollen record from the Arabian Sea , 1982, Nature.

[39]  T. Warn Statistical mechanical equilibria of the shallow water equations , 1986 .

[40]  H. Craig,et al.  Methane: The record in polar ice cores , 1982 .