Multiple spatio-temporal scale modeling of composites subjected to cyclic loading

This manuscript presents a multiscale modeling methodology for failure analysis of composites subjected to cyclic loading conditions. Computational homogenization theory with multiple spatial and temporal scales is employed to devise the proposed methodology. Multiple spatial scales address the disparity between the length scale of material heterogeneities and the overall structure, whereas multiple temporal scales with almost periodic fields address the disparity between the load period and overall life under cyclic loading. The computational complexity of the multiscale modeling approach is reduced by employing a meso-mechanical model based on eigendeformation based homogenization with symmetric coefficients in the space domain, and an adaptive time stepping strategy based on a quadratic multistep method with error control in the time domain. The proposed methodology is employed to simulate the response of graphite fiber-reinforced epoxy composites. Model parameters are calibrated using a suite of experiments conducted on unidirectionally reinforced specimens subjected to monotonic and cyclic loading. The calibrated model is employed to predict damage progression in quasi-isotropic specimens. The capabilities of the model are validated using acoustic emission testing.

[1]  Jacob Fish,et al.  Fatigue life prediction using 2‐scale temporal asymptotic homogenization , 2004 .

[2]  Ted Belytschko,et al.  The extended finite element method for fracture in composite materials , 2009 .

[3]  Jacob Aboudi,et al.  A continuum theory for fiber-reinforced elastic-viscoplastic composites , 1982 .

[4]  Ramesh Talreja,et al.  A micromechanics based model for predicting fatigue life of composite laminates , 2000 .

[5]  Jacob Fish,et al.  Multiscale Modeling of Fatigue for Ductile Materials , 2004 .

[6]  E. Sanchez-Palencia,et al.  Homogenization Techniques for Composite Media , 1987 .

[7]  Wam Marcel Brekelmans,et al.  A continuum approach to brittle and fatigue damage: Theory and numerical procedures , 1993 .

[8]  M. D. Thouless,et al.  Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite , 2005 .

[9]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[10]  Robert Lipton,et al.  Local Field Assessment inside Multiscale Composite Architectures , 2007, Multiscale Model. Simul..

[11]  Krueger Ronald,et al.  A Shell/3D Modeling Technique for the Analysis of Delaminated Composite Laminates , 2000 .

[12]  C. Oskay,et al.  Symmetric Mesomechanical Model for Failure Analysis of Heterogeneous Materials , 2010 .

[13]  G. Dvorak Transformation field analysis of inelastic composite materials , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  Somnath Ghosh,et al.  Elastic-plastic analysis of arbitrary heterogeneous materials with the Voronoi Cell finite element method , 1995 .

[15]  E. S. Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[16]  Jacob Fish,et al.  A Nonlocal Multiscale Fatigue Model , 2005 .

[17]  Qing Yu,et al.  Computational mechanics of fatigue and life predictions for composite materials and structures , 2002 .

[18]  A. Maniatty,et al.  A geometric approach to modeling microstructurally small fatigue crack formation: II. Physically based modeling of microstructure-dependent slip localization and actuation of the crack nucleation mechanism in AA 7075-T651 , 2010 .

[19]  Kenneth Reifsnider,et al.  The critical element model: A modeling philosophy , 1986 .

[20]  Jacob Fish,et al.  Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials , 2007 .

[21]  H. Moulinec,et al.  A fast numerical method for computing the linear and nonlinear mechanical properties of composites , 1994 .

[22]  Jeremy Gregory,et al.  Constituent and composite quasi-static and fatigue fracture experiments , 2005 .

[23]  Ted Belytschko,et al.  Multiscale aggregating discontinuities: A method for circumventing loss of material stability , 2008 .

[24]  Michael F. Ashby,et al.  Fatigue damage mechanics of composite materials. II: A damage growth model , 1992 .

[25]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[26]  Vinh Phu Nguyen,et al.  Computational homogenization for multiscale crack modeling. Implementational and computational aspects , 2012 .

[27]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[28]  Larry Lessard,et al.  Progressive Fatigue Damage Modeling of Composite Materials, Part I: Modeling , 2000 .

[29]  Julien Yvonnet,et al.  The reduced model multiscale method (R3M) for the non-linear homogenization of hyperelastic media at finite strains , 2007, J. Comput. Phys..

[30]  P. Schwartz,et al.  Bending fatigue of carbon-fiber-reinforced epoxy composite strands , 1997 .

[31]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[32]  Somnath Ghosh,et al.  A continuum damage mechanics model for unidirectional composites undergoing interfacial debonding , 2005 .

[33]  Mark S. Shephard,et al.  Computational plasticity for composite structures based on mathematical homogenization: Theory and practice , 1997 .

[34]  Kenjiro Terada,et al.  Nonlinear homogenization method for practical applications , 1995 .

[35]  Jacob Fish,et al.  A Multiscale Design System for Fatigue Life Prediction , 2007 .