A new finite volume discretization scheme to solve 3D incompressible thermal flows on unstructured meshes

Abstract We present a new method to solve incompressible thermal flows and the transport of scalar quantities. It is a finite volume scheme for unstructured meshes whose time discretization is based upon the fractional time step method. The governing equations are discretized using a collocated, cell-centered arrangement of velocity and pressure. The solution variables are stored at the cell-circumcenters. This scheme is convergent, stable and allows computing solutions that does not violate the maximum principle when it applies. Theoretical results and numerical properties of the scheme are provided. Predictions of Boussinesq fluid flow, flow past a cylinder and heat transport in a cylinder are performed to validate the method.

[1]  W. Coirier An Adaptively-Refined, Cartesian, Cell-Based Scheme for the Euler and Navier-Stokes Equations. Ph.D. Thesis - Michigan Univ. , 1994 .

[2]  A. Chorin Numerical solution of the Navier-Stokes equations , 1968 .

[3]  Florent Cayré Méthodes volumes finis sur maillages non structurés pour la simulation numérique des écoulements incompressibles monophasiques et diphasiques , 1999 .

[4]  Jiri Blazek,et al.  Accurate and Efficient Discretization of Navier-Stokes Equations on Mixed Grids , 2000 .

[5]  Jean-Marc Hérard,et al.  A finite volume method to solve the 3D Navier–Stokes equations on unstructured collocated meshes , 2004 .

[6]  J. Whitelaw,et al.  Convective heat and mass transfer , 1966 .

[7]  I. Faille,et al.  A control volume method to solve an elliptic equation on a two-dimensional irregular mesh , 1992 .

[8]  Dimitri J. Mavriplis,et al.  Three-dimensional multigrid Reynolds-averaged Navier-Stokes solver for unstructured meshes , 1995 .

[9]  Jean-Marc Hérard,et al.  A finite volume method to solve the Navier-Stokes equations for incompressible flows on unstructured meshes , 2000 .

[10]  Jie Shen,et al.  On error estimates of the projection methods for the Navier-Stokes equations: Second-order schemes , 1996, Math. Comput..

[11]  Jean-Marc Hérard,et al.  Un schéma de type volumes finis pour résoudre les équations de Navier-Stokes sur une triangulation , 1996 .

[12]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[13]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[14]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[15]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[16]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[17]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[18]  S. Perron Résolution numérique d'écoulements 3 dimensions avec une nouvelle méthode de volumes finis pour maillages non structurés , 2001 .

[19]  R. Eymard,et al.  Finite Volume Methods , 2019, Computational Methods for Fluid Dynamics.