Interference engineering for network secrecy in Nakagami fading channels

The demand of communication confidentiality in wireless network is rapidly increasing. The level of confidentiality can be enhanced by physical layer techniques exploiting intrinsic properties of a wireless network. We develop a framework for design and analysis of wireless network with secrecy that accounts for node distribution, propagation medium, and intentional interference. The framework enables the quantification of how intentional interference generated via legitimate network resources engineering mitigates the capability of the eavesdropping network. This research provides insight on the opportunistic use of legitimate network resources for enhancing network secrecy.

[1]  Shlomo Shamai,et al.  Secure Communication Over Fading Channels , 2007, IEEE Transactions on Information Theory.

[2]  Alfred O. Hero,et al.  Secure space-time communication , 2003, IEEE Trans. Inf. Theory.

[3]  Moe Z. Win,et al.  A Mathematical Theory of Network Interference and Its Applications , 2009, Proceedings of the IEEE.

[4]  E.S. Sousa,et al.  Performance of a spread spectrum packet radio network link in a Poisson field of interferers , 1992, IEEE Trans. Inf. Theory.

[5]  Matthew R. McKay,et al.  Rethinking the Secrecy Outage Formulation: A Secure Transmission Design Perspective , 2011, IEEE Communications Letters.

[6]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[7]  R. Negi,et al.  Secret communication using artificial noise , 2005, VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005..

[8]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[9]  Shlomo Shamai,et al.  Secrecy-achieving polar-coding , 2010, 2010 IEEE Information Theory Workshop.

[10]  Onur Ozan Koyluoglu,et al.  Polar coding for secure transmission and key agreement , 2010, 21st Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications.

[11]  Richard E. Blahut,et al.  Secrecy capacity of SIMO and slow fading channels , 2005, Proceedings. International Symposium on Information Theory, 2005. ISIT 2005..

[12]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[13]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas—Part II: The MIMOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[14]  Mikael Skoglund,et al.  Nested Polar Codes for Wiretap and Relay Channels , 2010, IEEE Communications Letters.

[15]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[16]  Moe Z. Win,et al.  Intentional Network Interference for Denial of Wireless Eavesdropping , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[17]  Kin K. Leung,et al.  Artificial Noise Generation from Cooperative Relays for Everlasting Secrecy in Two-Hop Wireless Networks , 2011, IEEE Journal on Selected Areas in Communications.

[18]  Moe Z. Win,et al.  Secure Communication in Stochastic Wireless Networks—Part I: Connectivity , 2012, IEEE Transactions on Information Forensics and Security.

[19]  Alexander Vardy,et al.  Achieving the secrecy capacity of wiretap channels using Polar codes , 2010, ISIT.

[20]  D. Applebaum Stable non-Gaussian random processes , 1995, The Mathematical Gazette.

[21]  Moe Z. Win,et al.  The role of aggregate interference on intrinsic network secrecy , 2012, 2012 IEEE International Conference on Communications (ICC).