The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP – Part 1: Model descriptions

Abstract. The NEMS GFS Aerosol Component Version 2.0 (NGACv2) for global multispecies aerosol forecast has been developed at the National Centers of Environment Prediction (NCEP) in collaboration with the NESDIS Center for Satellite Applications and Research (STAR), the NASA Goddard Space Flight Center (GSFC), and the University at Albany, State University of New York (SUNYA). This paper describes the continuous development of the NGAC system at NCEP after the initial global dust-only forecast implementation (NGAC version 1.0, NGACv1). With NGACv2, additional sea salt, sulfate, organic carbon, and black carbon aerosol species were included. The smoke emissions are from the NESDIS STAR's Global Biomass Burning Product (GBBEPx), blended from the global biomass burning emission product from a constellation of geostationary satellites (GBBEP-Geo) and GSFC's Quick Fire Emission Data Version 2 from a polar-orbiting sensor (QFED2). This implementation advanced the global aerosol forecast capability and made a step forward toward developing a global aerosol data assimilation system. The aerosol products from this system have been used by many applications such as for regional air quality model lateral boundary conditions, satellite sea surface temperature (SST) physical retrievals, and the global solar insolation estimation. Positive impacts have been seen in these applications.

[1]  B. Albrecht Aerosols, Cloud Microphysics, and Fractional Cloudiness , 1989, Science.

[2]  C. Bretherton,et al.  Implementation in the NCEP GFS of a Hybrid Eddy-Diffusivity Mass-Flux (EDMF) Boundary Layer Parameterization with Dissipative Heating and Modified Stable Boundary Layer Mixing , 2016 .

[3]  M. Chin,et al.  Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006 , 2009 .

[4]  M. Gilles,et al.  Organic Aerosol Growth Mechanisms and Their Climate-Forcing Implications , 2004, Science.

[5]  C. N. Hewitt,et al.  A global model of natural volatile organic compound emissions , 1995 .

[6]  Mian Chin,et al.  Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation , 2004, Environ. Model. Softw..

[7]  Irina N. Sokolik,et al.  Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths , 1999 .

[8]  M. Chin,et al.  Sources and distributions of dust aerosols simulated with the GOCART model , 2001 .

[9]  S. Moorthi,et al.  Relaxed Arakawa-Schubert - A parameterization of moist convection for general circulation models , 1992 .

[10]  Yoram J. Kaufman,et al.  Aerosol distribution in the Northern Hemisphere during ACE‐Asia: Results from global model, satellite observations, and Sun photometer measurements , 2004 .

[11]  M. Chin,et al.  Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO 2 from 1980 to 2010 for hindcast model experiments , 2012 .

[12]  R. Bird,et al.  Simplified clear sky model for direct and diffuse insolation on horizontal surfaces , 1981 .

[13]  A. J. Kettle,et al.  An updated climatology of surface dimethlysulfide concentrations and emission fluxes in the global ocean , 2011 .

[14]  S. Sherwood,et al.  Climate Effects of Aerosol-Cloud Interactions , 2014, Science.

[15]  P. Hari,et al.  Overview of the biosphere-aerosol-cloud-climate interactions (BACCI) studies , 2008 .

[16]  F. Joseph Turk,et al.  An 11-year global gridded aerosol optical thickness reanalysis (v1.0) for atmospheric and climate sciences , 2016 .

[17]  D. N. Walters,et al.  Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model , 2014 .

[18]  S. Moorthi,et al.  Documentation of version 2 of Relaxed Arakawa-Schubert cumulus paramerterization with convective downdrafts , 1999 .

[19]  Axel Lauer,et al.  © Author(s) 2006. This work is licensed under a Creative Commons License. Atmospheric Chemistry and Physics Analysis and quantification of the diversities of aerosol life cycles , 2022 .

[20]  Mian Chin,et al.  Intercontinental transport of pollution and dust aerosols : implications for regional air quality , 2007 .

[21]  Ping Yang,et al.  Impact of radiatively interactive dust aerosols in the NASA GEOS‐5 climate model: Sensitivity to dust particle shape and refractive index , 2014 .

[22]  Jean-Jacques Morcrette,et al.  Influence of aerosol climatology on forecasts of the African Easterly Jet , 2005 .

[23]  H. Pan,et al.  Revision of Convection and Vertical Diffusion Schemes in the NCEP Global Forecast System , 2011 .

[24]  C. Liousse,et al.  Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model , 1999 .

[25]  Cheng-Hsuan Lu,et al.  The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP – Part 2: Evaluation of aerosol optical thickness , 2017, Geoscientific Model Development.

[26]  William R. Cotton,et al.  Aerosol Effects on Microstructure and Intensity of Tropical Cyclones , 2012 .

[27]  S. Ghan,et al.  Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model , 2014, Proceedings of the National Academy of Sciences.

[28]  P. Ineichen,et al.  A new operational model for satellite-derived irradiances: description and validation , 2002 .

[29]  A. Robins,et al.  Air pollution modeling and its application XX , 2010 .

[30]  Mian Chin,et al.  Atmospheric sulfur cycle simulated in the global model GOCART: Comparison with field observations and regional budgets , 2000 .

[31]  M. Chin,et al.  Global observations of aerosol‐cloud‐precipitation‐climate interactions , 2014 .

[32]  Eileen Maturi,et al.  Hybrid cloud and error masking to improve the quality of deterministic satellite sea surface temperature retrieval and data coverage , 2016 .

[33]  David G. Streets,et al.  Aerosol trends over China, 1980-2000 , 2008 .

[34]  N. Mahowald Aerosol Indirect Effect on Biogeochemical Cycles and Climate , 2011, Science.

[35]  P. Ineichen,et al.  A NEW OPERATIONAL SATELLITE-TO-IRRADIANCE MODEL - DESCRIPTION AND VALIDATION , 2002 .

[36]  Zhanqing Li,et al.  Substantial contribution of anthropogenic air pollution to catastrophic floods in Southwest China , 2015 .

[37]  M. Chin,et al.  Online simulations of global aerosol distributions in the NASA GEOS‐4 model and comparisons to satellite and ground‐based aerosol optical depth , 2010 .

[38]  U. Lohmann,et al.  Global indirect aerosol effects: a review , 2004 .

[39]  C. Kottmeier,et al.  Direct radiative effects of sea salt for the Mediterranean region under conditions of low to moderate wind speeds , 2013 .

[40]  J. Quaas The aerosol indirect effect , 2003 .

[41]  G. Carmichael,et al.  Central American biomass burning smoke can increase tornado severity in the U.S. , 2015 .

[42]  R. Perez,et al.  Satellite-to-irradiance modeling - a new version of the SUNY model , 2015, 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC).

[43]  Mian Chin,et al.  A global aerosol model forecast for the ACE-Asia field experiment , 2003 .

[44]  H.-M. H. Juang,et al.  The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP. , 2016, Geoscientific model development.

[45]  M. Razinger,et al.  Development towards a global operational aerosol consensus: basic climatological characteristics of the International Cooperative for Aerosol Prediction Multi-Model Ensemble (ICAP-MME) , 2014 .

[46]  J. Morcrette,et al.  A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields , 2003 .

[47]  D. Streets,et al.  A technology‐based global inventory of black and organic carbon emissions from combustion , 2004 .

[48]  O. Boucher,et al.  Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review , 2000 .

[49]  J. Michalsky,et al.  Modeling daylight availability and irradiance components from direct and global irradiance , 1990 .

[50]  S. Gong,et al.  A parameterization of sea‐salt aerosol source function for sub‐ and super‐micron particles , 2003 .

[51]  S. Twomey The Influence of Pollution on the Shortwave Albedo of Clouds , 1977 .

[52]  M. Facchini,et al.  The influence of the organic aerosol component on CCN supersaturation spectra for different aerosol types , 2002 .

[53]  B. Marticorena,et al.  Modeling the atmospheric dust cycle: 1. Design of a soil-derived dust emission scheme , 1995 .

[54]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[55]  V. Ramanathan,et al.  Aerosols, Climate, and the Hydrological Cycle , 2001, Science.

[56]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[57]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[58]  Andy Harris,et al.  Sea Surface Temperature Retrieval from MODIS Radiances Using Truncated Total Least Squares with Multiple Channels and Parameters , 2016, Remote. Sens..

[59]  D. E. Spiel,et al.  A Model of Marine Aerosol Generation Via Whitecaps and Wave Disruption , 1986 .

[60]  Mark Ruminski,et al.  NAQFC Developmental Forecast Guidance for Fine Particulate Matter (PM2.5) , 2017 .

[61]  David G. Streets,et al.  Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements , 2009 .

[62]  J. Lamarque,et al.  Aerosol indirect effects , 2015 .

[63]  Georg A. Grell,et al.  Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches , 2011 .

[64]  C. Gueymard REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation – Validation with a benchmark dataset , 2008 .

[65]  L. Merlivat,et al.  Air-Sea Gas Exchange Rates: Introduction and Synthesis , 1986 .

[66]  M. Christensen,et al.  An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature , 2016 .

[67]  D. Rosenfeld Aerosol-Cloud Interactions Control of Earth Radiation and Latent Heat Release Budgets , 2007 .

[68]  Axel Lauer,et al.  Emissions from international shipping: 1. The last 50 years , 2005 .

[69]  Mian Chin,et al.  The effect of the dynamic surface bareness on dust source function, emission, and distribution , 2013 .

[70]  Christopher C. Schmidt,et al.  Near-Real-Time Global Biomass Burning Emissions Product from Geostationary Satellite Constellation , 2012 .

[71]  Andrew Harris,et al.  A Physical Deterministic Inverse Method for Operational Satellite Remote Sensing: An Application for Sea SurfaceTemperature Retrievals , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[72]  Shian-Jiann Lin,et al.  Atmospheric Sulfur Cycle Simulated in the Global Model Gocart: Model Description and Global Properties , 2013 .

[73]  B. Stevens,et al.  Untangling aerosol effects on clouds and precipitation in a buffered system , 2009, Nature.

[74]  S. Freitas,et al.  Inclusion of biomass burning in WRF-Chem: impact of wildfires on weather forecasts , 2010 .

[75]  M. Chin,et al.  Multiscale carbon monoxide and aerosol correlations from satellite measurements and the GOCART model: Implication for emissions and atmospheric evolution , 2010 .

[76]  Oreste Reale,et al.  Impact of Interactive Aerosol on the African Easterly Jet in the NASA GEOS-5 Global Forecasting System , 2011 .