A Noise-Efficient 36 nV/ $\surd $ Hz Chopper Amplifier Using an Inverter-Based 0.2-V Supply Input Stage

This paper presents an analog front end (AFE) that achieves a high noise efficiency by using a chopper amplifier with a 0.2-V supply inverter-based input stage followed by a 0.8-V supply stage. The high input-stage current needed to reduce the input-referred noise is drawn from the 0.2-V supply, significantly reducing power consumption. The 0.8 V stage provides high gain and signal swing, improving linearity. Biasing and common-mode rejection techniques for the ultra-low-voltage stage are presented. The AFE is implemented in a 0.18 <inline-formula> <tex-math notation="LaTeX">$\mu \text{m}$ </tex-math></inline-formula> CMOS process and integrates the chopper low-noise instrumentation amplifier, a programmable-gain amplifier, and an antialiasing filter. The AFE consumes 0.79 <inline-formula> <tex-math notation="LaTeX">$\mu \text{W}$ </tex-math></inline-formula> and achieves a competitive power efficiency factor (PEF) of 1.6 and an input noise of 0.94 <inline-formula> <tex-math notation="LaTeX">$\mu \text{V}_{\text {rms}}$ </tex-math></inline-formula> integrated from 0.5 to 670 Hz while maintaining a 36 nV/<inline-formula> <tex-math notation="LaTeX">$\surd $ </tex-math></inline-formula>Hz input noise density down to 0.5 Hz. The included 0.8/0.2-V buck converter may be used to provide the 0.2-V supply at 72%–74% efficiency without significantly increasing noise, yielding a PEF of 1.8.

[1]  J. Holleman,et al.  A Sub-Microwatt Low-Noise Amplifier for Neural Recording , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[2]  Jan M. Rabaey,et al.  A 0.013 ${\hbox {mm}}^{2}$, 5 $\mu\hbox{W}$ , DC-Coupled Neural Signal Acquisition IC With 0.5 V Supply , 2012, IEEE Journal of Solid-State Circuits.

[3]  Chao Chen,et al.  A compact 0.135-mW/channel LNA array for piezoelectric ultrasound transducers , 2015, ESSCIRC Conference 2015 - 41st European Solid-State Circuits Conference (ESSCIRC).

[4]  W.M.C. Sansen,et al.  A micropower low-noise monolithic instrumentation amplifier for medical purposes , 1987 .

[5]  Kofi A. A. Makinwa,et al.  A 1.8 $\mu$ W 60 nV$/\surd$ Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes , 2011, IEEE Journal of Solid-State Circuits.

[6]  Yong Ping Xu,et al.  11.6 A multi-channel neural-recording amplifier system with 90dB CMRR employing CMOS-inverter-based OTAs with CMFB through supply rails in 65nm CMOS , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[7]  Chen Zhang,et al.  A 16-Channel Patient-Specific Seizure Onset and Termination Detection SoC With Impedance-Adaptive Transcranial Electrical Stimulator , 2015, IEEE Journal of Solid-State Circuits.

[8]  Hao Gao,et al.  A 0.20 mm2 3 nW Signal Acquisition IC for Miniature Sensor Nodes in 65 nm CMOS , 2016, IEEE J. Solid State Circuits.

[9]  A.P. Chandrakasan,et al.  Minimum Energy Tracking Loop With Embedded DC–DC Converter Enabling Ultra-Low-Voltage Operation Down to 250 mV in 65 nm CMOS , 2008, IEEE Journal of Solid-State Circuits.

[10]  Dong Han,et al.  A 0.45V 100-channel neural-recording IC with sub-µW/channel consumption in 0.18µm CMOS , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[11]  Hariprasad Chandrakumar,et al.  27.1 A 2.8µW 80mVpp-linear-input-range 1.6GΩ-input impedance bio-signal chopper amplifier tolerant to common-mode interference up to 650mVpp , 2017, 2017 IEEE International Solid-State Circuits Conference (ISSCC).

[12]  Shuang Song,et al.  A Low-Voltage Chopper-Stabilized Amplifier for Fetal ECG Monitoring With a 1.41 Power Efficiency Factor , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[13]  Marcus Yip Ultra-low-power circuits and systems for wearable and implantable medical devices , 2013 .

[14]  Anantha Chandrakasan,et al.  A sub-μW 36nV/√Hz chopper amplifier for sensors using a noise-efficient inverter-based 0.2V-supply input stage , 2016, 2016 IEEE International Solid-State Circuits Conference (ISSCC).

[15]  Naveen Verma,et al.  A Micro-Power EEG Acquisition SoC With Integrated Feature Extraction Processor for a Chronic Seizure Detection System , 2010, IEEE Journal of Solid-State Circuits.

[16]  Alyosha C. Molnar,et al.  An Orthogonal Current-Reuse Amplifier for Multi-Channel Sensing , 2013, IEEE Journal of Solid-State Circuits.

[17]  Marian Verhelst,et al.  24.2 Context-aware hierarchical information-sensing in a 6μW 90nm CMOS voice activity detector , 2015, 2015 IEEE International Solid-State Circuits Conference - (ISSCC) Digest of Technical Papers.

[18]  Rahul Sarpeshkar,et al.  An Energy-Efficient Micropower Neural Recording Amplifier , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[19]  David Blaauw,et al.  A 266nW multi-chopper amplifier with 1.38 noise efficiency factor for neural signal recording , 2014, 2014 Symposium on VLSI Circuits Digest of Technical Papers.

[20]  J G Webster,et al.  60-HZ interference in electrocardiography. , 1973, IEEE transactions on bio-medical engineering.

[21]  A.-T. Avestruz,et al.  A 2 $\mu\hbox{W}$ 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials , 2007, IEEE Journal of Solid-State Circuits.