Renal albumin filtration: alternative models to the standard physical barriers

Human kidneys produce more than 4 million litres of virtually protein-free primary urine in a lifetime. In healthy individuals, the sieving process is accomplished by the glomerular filter without the smallest sign of clogging, even in old age. How nature accomplishes this extraordinary task is a mystery, but unravelling the functioning of the glomerular filter is important. The basic principles that govern glomerular filtration are probably also true for peripheral filtering by fenestrated capillaries. In addition, understanding the sieving process is a prerequisite to understanding the pathogenesis of proteinuria (that is, the leakage of plasma proteins into the urine). Proteinuria is the hallmark of glomerular disease and a major risk factor for systemic cardiovascular complications, a fact that emphasizes the relationship between the glomerular and peripheral filtering capillaries. In this Review, we briefly summarize the major models that have been proposed for the mechanisms of glomerular filtration and discuss their strengths and limitations. A special emphasis is placed on the 'electrokinetic model' that we have proposed, a model that could potentially resolve many of the seemingly strange characteristics of the glomerular filtration barrier.

[1]  J. Pappenheimer,et al.  Filtration, diffusion and molecular sieving through peripheral capillary membranes; a contribution to the pore theory of capillary permeability. , 1951, The American journal of physiology.

[2]  B. Haraldsson,et al.  Glomerular size and charge selectivity in the mouse after exposure to glucosaminoglycan-degrading enzymes. , 2003, Journal of the American Society of Nephrology : JASN.

[3]  C J Lumsden,et al.  Explaining glomerular pores with fiber matrices. A visualization study based on computer modeling. , 1993, Biophysical journal.

[4]  J. Lyklema,et al.  Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report) , 2005 .

[5]  W. Deen,et al.  Structural determinants of glomerular permeability. , 2001, American journal of physiology. Renal physiology.

[6]  M. Karnovsky,et al.  POROUS SUBSTRUCTURE OF THE GLOMERULAR SLIT DIAPHRAGM IN THE RAT AND MOUSE , 1974, The Journal of cell biology.

[7]  B. Duling,et al.  Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries. , 1996, Circulation research.

[8]  M. Woodward,et al.  Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis , 2010, The Lancet.

[9]  J. Miner,et al.  Update on the glomerular filtration barrier , 2009, Current opinion in nephrology and hypertension.

[10]  Jenny Nyström,et al.  Properties of the Glomerular Barrier and Mechanisms of Proteinuria , 2022 .

[11]  S. Karumanchi,et al.  The glomerular injury of preeclampsia. , 2007, Journal of the American Society of Nephrology : JASN.

[12]  A. Zydney,et al.  Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane. , 2013, Biophysical journal.

[13]  B. Brenner,et al.  The dynamics of glomerular ultrafiltration in the rat. , 1971, The Journal of clinical investigation.

[14]  R. R. Robinson,et al.  Fixed and reproducible orthostatic proteinuria. III. Effect of induced renal hemodynamic alterations upon urinary protein excretion. , 1963, The Journal of clinical investigation.

[15]  G. Remuzzi,et al.  Imaging of the porous ultrastructure of the glomerular epithelial filtration slit. , 2010, Journal of the American Society of Nephrology : JASN.

[16]  S. Ohno,et al.  Ultrastructural study of the glomerular slit diaphragm in fresh unfixed kidneys by a quick-freezing method , 1992, Virchows Archiv. B, Cell pathology including molecular pathology.

[17]  J. L. Simons,et al.  Proteinuria and impaired glomerular permselectivity in uninephrectomized fawn-hooded rats. , 1994, The American journal of physiology.

[18]  M. Karnovsky,et al.  Distribution of endogenous albumin in the rat glomerulus: role of hemodynamic factors in glomerular barrier function. , 1976, Kidney international.

[19]  P. Verroust,et al.  Mouse model of proximal tubule endocytic dysfunction. , 2011, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[20]  H. Gröne,et al.  Effects of increased renal tubular vascular endothelial growth factor (VEGF) on fibrosis, cyst formation, and glomerular disease. , 2009, The American journal of pathology.

[21]  Emil R. Unanue,et al.  Podocytes use FcRn to clear IgG from the glomerular basement membrane , 2008, Proceedings of the National Academy of Sciences.

[22]  B. Haraldsson,et al.  A quantitative analysis of the glomerular charge barrier in the rat. , 2001, American journal of physiology. Renal physiology.

[23]  G. Eppel,et al.  The return of glomerular-filtered albumin to the rat renal vein. , 1999, Kidney international.

[24]  C. Betsholtz,et al.  Paracrine PDGF-B/PDGF-Rbeta signaling controls mesangial cell development in kidney glomeruli. , 1998, Development.

[25]  J. S. Fong,et al.  Kidney glomeruli. , 1974, Methods in enzymology.

[26]  R. Burgess,et al.  Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. , 2007, The American journal of pathology.

[27]  S. M. Shea,et al.  A stereological study of the glomerular filter in the rat. Morphometry of the slit diaphragm and basement membrane , 1975, The Journal of cell biology.

[28]  G. Palade,et al.  GLOMERULAR PERMEABILITY , 1961, The Journal of experimental medicine.

[29]  T. Libermann,et al.  Soluble endoglin contributes to the pathogenesis of preeclampsia , 2006, Nature Medicine.

[30]  R. Stan,et al.  Resolved: capillary endothelium is a major contributor to the glomerular filtration barrier. , 2007, Journal of the American Society of Nephrology : JASN.

[31]  A. Persson,et al.  The gel hypothesis applied to the rat renal capillary membranes – a review , 2011, Acta physiologica.

[32]  K. Tryggvason,et al.  Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. , 2009, Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association.

[33]  W. Deen,et al.  Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. , 1998, American journal of physiology. Renal physiology.

[34]  R. Kalluri,et al.  Neutralization of Circulating Vascular Endothelial Growth Factor (VEGF) by Anti-VEGF Antibodies and Soluble VEGF Receptor 1 (sFlt-1) Induces Proteinuria* , 2003, The Journal of Biological Chemistry.

[35]  B. Brenner,et al.  Permselectivity of the glomerular capillary wall. Facilitated filtration of circulating polycations. , 1978, The Journal of clinical investigation.

[36]  S. Harper,et al.  New aspects of glomerular filtration barrier structure and function: five layers (at least) not three. , 2009, Current opinion in nephrology and hypertension.

[37]  H. Rennke,et al.  Glomerular permeability: in vivo tracer studies with polyanionic and polycationic ferritins. , 1977, Kidney international.

[38]  T. Libermann,et al.  Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia , 2003 .

[39]  J. G. van den Berg,et al.  Podocyte foot process effacement is not correlated with the level of proteinuria in human glomerulopathies. , 2004, Kidney international.

[40]  B. Galeano,et al.  Mutation in the key enzyme of sialic acid biosynthesis causes severe glomerular proteinuria and is rescued by N-acetylmannosamine. , 2007, The Journal of clinical investigation.

[41]  Eetu Mäkelä,et al.  Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. , 2004, The Journal of clinical investigation.

[42]  M. Moeller,et al.  Role of the podocyte in proteinuria , 2011, Pediatric Nephrology.

[43]  F. Epstein,et al.  Preeclampsia and angiogenic imbalance. , 2008, Annual review of medicine.

[44]  B. Haraldsson,et al.  Morphological and functional evidence for an important role of the endothelial cell glycocalyx in the glomerular barrier. , 2006, American journal of physiology. Renal physiology.

[45]  J. Miner Glomerular basement membrane composition and the filtration barrier , 2011, Pediatric Nephrology.

[46]  Bengt Rippe,et al.  Glomerular filtration rate dependence of sieving of albumin and some neutral proteins in rat kidneys. , 2003, American journal of physiology. Renal physiology.

[47]  K. Qvortrup,et al.  Sieve Plugs in Fenestrae of Glomerular Capillaries – Site of the Filtration Barrier? , 2001, Cells Tissues Organs.

[48]  R. J. Hunter,et al.  Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report) , 2005 .

[49]  J. A. James,et al.  Some features of glomerular filtration and permeability revealed by electron microscopy after intraperitoneal injection of dextran in rats. , 1961, The American journal of pathology.

[50]  W. Deen,et al.  Hindrance Factors for Diffusion and Convection in Pores , 2006 .

[51]  C. P. Winlove,et al.  Investigation of the Endothelial Cell Glycocalyx using Electrophoresis , 1994 .

[52]  B. S. Daniels,et al.  Increased albumin permeability in vitro following alterations of glomerular charge is mediated by the cells of the filtration barrier. , 1994, The Journal of laboratory and clinical medicine.

[53]  W. Comper,et al.  Disease-dependent mechanisms of albuminuria. , 2008, American journal of physiology. Renal physiology.

[54]  B. Brenner,et al.  Permselectivity of the glomerular capillary wall to macromolecules. II. Experimental studies in rats using neutral dextran. , 1975, Biophysical journal.

[55]  M. Karnovsky,et al.  Substructure of the glomerular slit diaphragm in freeze-fractured normal rat kidney , 1975, The Journal of cell biology.

[56]  R. Cotran,et al.  Role of molecular charge in glomerular permeability. Tracer studies with cationized ferritins , 1975, The Journal of cell biology.

[57]  D. Nochy,et al.  VEGF inhibition and renal thrombotic microangiopathy. , 2008, The New England journal of medicine.

[58]  B. Molitoris,et al.  The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. , 2007, Kidney international.

[59]  Corinne Antignac,et al.  NPHS2, encoding the glomerular protein podocin, is mutated in autosomal recessive steroid-resistant nephrotic syndrome , 2000, Nature Genetics.

[60]  M. Grepl,et al.  The glomerular filtration barrier function: new concepts , 2012, Current opinion in nephrology and hypertension.

[61]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[62]  Endocytosis: a property of the glomerular visceral epithelial cell. , 1978, Nephron.

[63]  O. Smithies Why the kidney glomerulus does not clog: A gel permeation/diffusion hypothesis of renal function , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  T. Hostetter,et al.  Glomerular basement membrane: in vitro studies of water and protein permeability. , 1992, The American journal of physiology.

[65]  K. Tryggvason,et al.  How does the kidney filter plasma? , 2005, Physiology.

[66]  A. Hishida,et al.  Intra-GBM site of the functional filtration barrier for endogenous proteins in rats. , 1993, Kidney international.

[67]  W. Comper,et al.  The glomerular filter: an imperfect barrier is required for perfect renal function , 2009, Current opinion in nephrology and hypertension.

[68]  R. Cotran,et al.  Tracer Studies with Cationized Ferritins , 1975 .

[69]  E. Vimr,et al.  In vivo enzymatic removal of alpha 2-->6-linked sialic acid from the glomerular filtration barrier results in podocyte charge alteration and glomerular injury. , 1996, Laboratory investigation; a journal of technical methods and pathology.

[70]  B. Haraldsson,et al.  A gel-membrane model of glomerular charge and size selectivity in series. , 2001, American journal of physiology. Renal physiology.

[71]  M. Bendayan,et al.  Distribution of endogenous albumin in the glomerular wall of proteinuric patients. , 1990, The American journal of pathology.

[72]  B. Haraldsson,et al.  Transport of macromolecules across microvascular walls: the two-pore theory. , 1994, Physiological reviews.

[73]  B. Rippe,et al.  Effects of glomerular filtration rate on Ficoll sieving coefficients (theta) in rats. , 2006, Kidney international.

[74]  M. Farquhar Editorial: The primary glomerular filtration barrier--basement membrane or epithelial slits? , 1975, Kidney international.

[75]  G. Palade,et al.  Glomerular permeability I. Ferritin transfer across the normal glomerular capillary wall. 1961. , 1999, Journal of the American Society of Nephrology : JASN.

[76]  A. Hishida,et al.  Glomerular handling of immune complex in the acute phase of active in situ immune complex glomerulonephritis employing cationized ferritin in rats , 1997, Virchows Archiv.

[77]  Shuvo Roy,et al.  Solute partitioning and filtration by extracellular matrices. , 2009, American journal of physiology. Renal physiology.

[78]  R Weinberg,et al.  New Concepts... , 1995 .

[79]  R. Thakker,et al.  Glomerular protein sieving and implications for renal failure in Fanconi syndrome. , 2001, Kidney international.

[80]  W. Deen,et al.  Molecular configuration and glomerular size selectivity in healthy and nephrotic humans. , 1997, The American journal of physiology.