Photon upconversion in core-shell nanoparticles.

Photon upconversion generally results from a series of successive electronic transitions within complex energy levels of lanthanide ions that are embedded in the lattice of a crystalline solid. In conventional lanthanide-doped upconversion nanoparticles, the dopant ions homogeneously distributed in the host lattice are readily accessible to surface quenchers and lose their excitation energy, giving rise to weak and susceptible emissions. Therefore, present studies on upconversion are mainly focused on core-shell nanoparticles comprising spatially confined dopant ions. By doping upconverting lanthanide ions in the interior of a core-shell nanoparticle, the upconversion emission can be substantially enhanced, and the optical integrity of the nanoparticles can be largely preserved. Optically active shells are also frequently employed to impart multiple functionalities to upconversion nanoparticles. Intriguingly, the core-shell design introduces the possibility of constructing novel upconversion nanoparticles by exploiting the energy exchange interactions across the core-shell interface. In this tutorial review, we highlight recent advances in the development of upconversion core-shell nanoparticles, with particular emphasis on the emerging strategies for regulating the interplay of dopant interactions through core-shell nanostructural engineering that leads to unprecedented upconversion properties. The improved control over photon energy conversion will open up new opportunities for biological and energy applications.

[1]  C. S. Lim,et al.  Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping , 2010, Nature.

[2]  W. Marsden I and J , 2012 .

[3]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[4]  Liangping Zhou,et al.  Controlled synthesis of uniform and monodisperse upconversion core/mesoporous silica shell nanocomposites for bimodal imaging. , 2012, Chemistry.

[5]  Qing Peng,et al.  A general strategy for nanocrystal synthesis , 2005, Nature.

[6]  Juan Wang,et al.  Direct evidence of a surface quenching effect on size-dependent luminescence of upconversion nanoparticles. , 2010, Angewandte Chemie.

[7]  Xiaogang Liu,et al.  Preparation of core-shell NaGdF4 nanoparticles doped with luminescent lanthanide ions to be used as upconversion-based probes , 2014, Nature Protocols.

[8]  Ya-Wen Zhang,et al.  Highly Efficient Multicolor Up-Conversion Emissions and Their Mechanisms of Monodisperse NaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals , 2007 .

[9]  Yujie Xiong,et al.  Modification of NaYF4:Yb,Er@SiO2 Nanoparticles with Gold Nanocrystals for Tunable Green-to-Red Upconversion Emissions , 2011 .

[10]  Wei Zheng,et al.  Sub-10 nm lanthanide-doped CaF2 nanoprobes for time-resolved luminescent biodetection. , 2013, Angewandte Chemie.

[11]  Qian Liu,et al.  A general strategy for biocompatible, high-effective upconversion nanocapsules based on triplet-triplet annihilation. , 2013, Journal of the American Chemical Society.

[12]  Wei Li,et al.  Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: shell thickness dependence in upconverting optical properties. , 2012, Nano letters.

[13]  B. Gates,et al.  Two-way photoswitching using one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. , 2010, Journal of the American Chemical Society.

[14]  Yuliang Zhao,et al.  Elimination of Photon Quenching by a Transition Layer to Fabricate a Quenching‐Shield Sandwich Structure for 800 nm Excited Upconversion Luminescence of Nd3+‐Sensitized Nanoparticles , 2014, Advanced materials.

[15]  Hai Zhu,et al.  Upconverting near-infrared light through energy management in core-shell-shell nanoparticles. , 2013, Angewandte Chemie.

[16]  Liangping Zhou,et al.  Gd3+‐Ion‐Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization , 2013 .

[17]  Wei Huang,et al.  Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. , 2013, Chemical Society reviews.

[18]  Yu Huang,et al.  Plasmonic modulation of the upconversion fluorescence in NaYF4 :Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. , 2010, Angewandte Chemie.

[19]  Paras N. Prasad,et al.  (α-NaYbF4:Tm(3+))/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. , 2012, ACS nano.

[20]  Yong Zhang,et al.  Synthesis of hexagonal-phase core-shell NaYF4 nanocrystals with tunable upconversion fluorescence. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[21]  Renren Deng,et al.  Tuning upconversion through energy migration in core-shell nanoparticles. , 2011, Nature materials.

[22]  M. Green,et al.  Luminescent layers for enhanced silicon solar cell performance: Up-conversion , 2006 .

[23]  Ling-Dong Sun,et al.  Nd(3+)-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. , 2013, ACS nano.

[24]  Ru‐Shi Liu,et al.  The effect of surface coating on energy migration-mediated upconversion. , 2012, Journal of the American Chemical Society.

[25]  Yun Sun,et al.  Core-shell lanthanide upconversion nanophosphors as four-modal probes for tumor angiogenesis imaging. , 2013, ACS nano.

[26]  Cunhai Dong,et al.  Self-focusing by Ostwald ripening: a strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. , 2012, Journal of the American Chemical Society.

[27]  T. Möller,et al.  Green-emitting CePO4:Tb/LaPO4 core-shell nanoparticles with 70% photoluminescence quantum yield. , 2003, Angewandte Chemie.

[28]  Ya-Wen Zhang,et al.  Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor. , 2005, Journal of the American Chemical Society.

[29]  D. Zhao,et al.  Successive Layer-by-Layer Strategy for Multi-Shell Epitaxial Growth: Shell Thickness and Doping Position Dependence in Upconverting Optical Properties , 2013 .

[30]  Chun-Hua Yan,et al.  Orderly Aligned and Highly Luminescent Monodisperse Rare-Earth Orthophosphate Nanocrystals Synthesized by a Limited Anion-Exchange Reaction , 2007 .

[31]  Gan-Moog Chow,et al.  Water -soluble NaYF4:Yb,Er (Tm)/NaYF4/Polymer Core/Shell/Shell nanoparticles with significant enhancement of upconversion fluorescence , 2007 .

[32]  Ping Huang,et al.  Lanthanide-doped LiLuF(4) upconversion nanoprobes for the detection of disease biomarkers. , 2014, Angewandte Chemie.

[33]  Fan Zhang,et al.  Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence. , 2007, Angewandte Chemie.

[34]  Jan C. Hummelen,et al.  Broadband dye-sensitized upconversion of near-infrared light , 2012, Nature Photonics.

[35]  A. Meijerink,et al.  Visible quantum cutting in LiGdF4:Eu3+ through downconversion , 1999, Science.

[36]  P. Prasad,et al.  Upconversion Nanoparticles: Design, Nanochemistry, and Applications in Theranostics , 2014, Chemical reviews.

[37]  Lei Zhou,et al.  Nd3+ Sensitized Up/Down Converting Dual-Mode Nanomaterials for Efficient In-vitro and In-vivo Bioimaging Excited at 800 nm , 2013, Scientific Reports.

[38]  N. J. Johnson,et al.  Facile ligand-exchange with polyvinylpyrrolidone and subsequent silica coating of hydrophobic upconverting beta-NaYF(4):Yb(3+)/Er(3+) nanoparticles. , 2010, Nanoscale.

[39]  F. Huang,et al.  Lanthanide dopant-induced formation of uniform sub-10 nm active-core/active-shell nanocrystals with near-infrared to near-infrared dual-modal luminescence , 2012 .

[40]  Shan Jiang,et al.  Multicolor Core/Shell‐Structured Upconversion Fluorescent Nanoparticles , 2008 .

[41]  Greg J. Stanisz,et al.  Size-Tunable, Ultrasmall NaGdF4 Nanoparticles: Insights into Their T1 MRI Contrast Enhancement , 2011 .

[42]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[43]  Peng Zhang,et al.  Enhancing multiphoton upconversion through energy clustering at sublattice level. , 2014, Nature materials.

[44]  Qiang Sun,et al.  Mechanistic investigation of photon upconversion in Nd(3+)-sensitized core-shell nanoparticles. , 2013, Journal of the American Chemical Society.

[45]  Chenglin Yan,et al.  Near-IR photoresponse in new up-converting CdSe/NaYF4:Yb,Er nanoheterostructures. , 2010, Journal of the American Chemical Society.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Demetra A. Chengelis,et al.  A strategy to protect and sensitize near-infrared luminescent Nd3+ and Yb3+: organic tropolonate ligands for the sensitization of Ln(3+)-doped NaYF4 nanocrystals. , 2007, Journal of the American Chemical Society.

[48]  Christopher G. Morgan,et al.  The Active‐Core/Active‐Shell Approach: A Strategy to Enhance the Upconversion Luminescence in Lanthanide‐Doped Nanoparticles , 2009 .

[49]  Jun Lin,et al.  Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. , 2013, Small.

[50]  Hans H Gorris,et al.  Tuning the Dual Emission of Photon‐Upconverting Nanoparticles for Ratiometric Multiplexed Encoding , 2011, Advanced materials.

[51]  F. Auzel Upconversion and anti-Stokes processes with f and d ions in solids. , 2004, Chemical reviews.

[52]  Taeghwan Hyeon,et al.  Nonblinking and Nonbleaching Upconverting Nanoparticles as an Optical Imaging Nanoprobe and T1 Magnetic Resonance Imaging Contrast Agent , 2009 .

[53]  C. Summers,et al.  Synthesis Protocols for δ-Doped NaYF4:Yb,Er , 2014 .