CogCompTime: A Tool for Understanding Time in Natural Language

Automatic extraction of temporal information is important for natural language understanding. It involves two basic tasks: (1) Understanding time expressions that are mentioned explicitly in text (e.g., February 27, 1998 or tomorrow), and (2) Understanding temporal information that is conveyed implicitly via relations. This paper introduces CogCompTime, a system that has these two important functionalities. It incorporates the most recent progress, achieves state-of-the-art performance, and is publicly available at http://cogcomp.org/page/publication_view/844.

[1]  James Pustejovsky,et al.  SemEval-2015 Task 5: QA TempEval - Evaluating Temporal Information Understanding with Question Answering , 2015, *SEMEVAL.

[2]  Hao Wu,et al.  Joint Reasoning for Temporal and Causal Relations , 2018, ACL.

[3]  Dan Roth,et al.  Joint Inference for Event Timeline Construction , 2012, EMNLP.

[4]  Hao Wu,et al.  A Multi-Axis Annotation Scheme for Event Temporal Relations , 2018, ACL.

[5]  Angel X. Chang,et al.  SUTime: A library for recognizing and normalizing time expressions , 2012, LREC.

[6]  Tommaso Caselli,et al.  SemEval-2010 Task 13: TempEval-2 , 2010, *SEMEVAL.

[7]  Dan Roth,et al.  A Robust Shallow Temporal Reasoning System , 2012, HLT-NAACL.

[8]  Dan Roth,et al.  Event Detection and Co-reference with Minimal Supervision , 2016, EMNLP.

[9]  Hao Wu,et al.  Improving Temporal Relation Extraction with a Globally Acquired Statistical Resource , 2018, NAACL.

[10]  Dan Roth,et al.  Extraction of events and temporal expressions from clinical narratives , 2013, J. Biomed. Informatics.

[11]  James Pustejovsky,et al.  SemEval-2015 Task 6: Clinical TempEval , 2015, *SEMEVAL.

[12]  Stephen D. Mayhew,et al.  CogCompNLP: Your Swiss Army Knife for NLP , 2018, LREC.

[13]  Daniel Jurafsky,et al.  Parsing Time: Learning to Interpret Time Expressions , 2012, NAACL.

[14]  Michael Gertz,et al.  HeidelTime: High Quality Rule-Based Extraction and Normalization of Temporal Expressions , 2010, *SEMEVAL.

[15]  Dan Roth,et al.  A Structured Learning Approach to Temporal Relation Extraction , 2017, EMNLP.

[16]  James Pustejovsky,et al.  SemEval-2007 Task 15: TempEval Temporal Relation Identification , 2007, Fourth International Workshop on Semantic Evaluations (SemEval-2007).

[17]  Taylor Cassidy,et al.  Dense Event Ordering with a Multi-Pass Architecture , 2014, TACL.

[18]  James Pustejovsky,et al.  SemEval-2013 Task 1: TempEval-3: Evaluating Time Expressions, Events, and Temporal Relations , 2013, *SEMEVAL.

[19]  Steven Bethard,et al.  ClearTK-TimeML: A minimalist approach to TempEval 2013 , 2013, *SEMEVAL.

[20]  Eneko Agirre,et al.  SemEval-2015 Task 4: TimeLine: Cross-Document Event Ordering , 2015, *SEMEVAL.

[21]  Luke S. Zettlemoyer,et al.  Context-dependent Semantic Parsing for Time Expressions , 2014, ACL.

[22]  Dan Roth,et al.  The Use of Classifiers in Sequential Inference , 2001, NIPS.